MCP 根上下文
根上下文是模型上下文协议中的一个基本概念,提供了一个持久层,用于在多个请求和会话之间维护对话历史和共享状态。
介绍
在本课中,我们将探讨如何在 MCP 中创建、管理和使用根上下文。
学习目标
完成本课后,您将能够:
- 理解根上下文的目的和结构
- 使用 MCP 客户端库创建和管理根上下文
- 在 .NET、Java、JavaScript 和 Python 应用中实现根上下文
- 利用根上下文进行多轮对话和状态管理
- 实施根上下文管理的最佳实践
理解根上下文
根上下文作为容器,保存一系列相关交互的历史和状态。它们支持:
- 对话持久性:保持连贯的多轮对话
- 记忆管理:跨交互存储和检索信息
- 状态管理:跟踪复杂工作流的进展
- 上下文共享:允许多个客户端访问相同的对话状态
在 MCP 中,根上下文具有以下关键特性:
- 每个根上下文都有唯一标识符。
- 可以包含对话历史、用户偏好及其他元数据。
- 可以根据需要创建、访问和归档。
- 支持细粒度的访问控制和权限管理。
根上下文生命周期
flowchart TD
A[Create Root Context] --> B[Initialize with Metadata]
B --> C[Send Requests with Context ID]
C --> D[Update Context with Results]
D --> C
D --> E[Archive Context When Complete]
使用根上下文
下面是一个创建和管理根上下文的示例。
C# 实现
// .NET Example: Root Context Management
using Microsoft.Mcp.Client;
using System;
using System.Threading.Tasks;
using System.Collections.Generic;
public class RootContextExample
{
private readonly IMcpClient _client;
private readonly IRootContextManager _contextManager;
public RootContextExample(IMcpClient client, IRootContextManager contextManager)
{
_client = client;
_contextManager = contextManager;
}
public async Task DemonstrateRootContextAsync()
{
// 1. Create a new root context
var contextResult = await _contextManager.CreateRootContextAsync(new RootContextCreateOptions
{
Name = "Customer Support Session",
Metadata = new Dictionary<string, string>
{
["CustomerName"] = "Acme Corporation",
["PriorityLevel"] = "High",
["Domain"] = "Cloud Services"
}
});
string contextId = contextResult.ContextId;
Console.WriteLine($"Created root context with ID: {contextId}");
// 2. First interaction using the context
var response1 = await _client.SendPromptAsync(
"I'm having issues scaling my web service deployment in the cloud.",
new SendPromptOptions { RootContextId = contextId }
);
Console.WriteLine($"First response: {response1.GeneratedText}");
// Second interaction - the model will have access to the previous conversation
var response2 = await _client.SendPromptAsync(
"Yes, we're using containerized deployments with Kubernetes.",
new SendPromptOptions { RootContextId = contextId }
);
Console.WriteLine($"Second response: {response2.GeneratedText}");
// 3. Add metadata to the context based on conversation
await _contextManager.UpdateContextMetadataAsync(contextId, new Dictionary<string, string>
{
["TechnicalEnvironment"] = "Kubernetes",
["IssueType"] = "Scaling"
});
// 4. Get context information
var contextInfo = await _contextManager.GetRootContextInfoAsync(contextId);
Console.WriteLine("Context Information:");
Console.WriteLine($"- Name: {contextInfo.Name}");
Console.WriteLine($"- Created: {contextInfo.CreatedAt}");
Console.WriteLine($"- Messages: {contextInfo.MessageCount}");
// 5. When the conversation is complete, archive the context
await _contextManager.ArchiveRootContextAsync(contextId);
Console.WriteLine($"Archived context {contextId}");
}
}
在上述代码中,我们:
- 为客户支持会话创建了一个根上下文。
- 在该上下文中发送了多条消息,使模型能够维护状态。
- 根据对话更新了相关元数据。
- 检索了上下文信息以了解对话历史。
- 在对话完成后归档了该上下文。
示例:金融分析的根上下文实现
在此示例中,我们将为金融分析会话创建根上下文,演示如何在多次交互中维护状态。
Java 实现
// Java Example: Root Context Implementation
package com.example.mcp.contexts;
import com.mcp.client.McpClient;
import com.mcp.client.ContextManager;
import com.mcp.models.RootContext;
import com.mcp.models.McpResponse;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
public class RootContextsDemo {
private final McpClient client;
private final ContextManager contextManager;
public RootContextsDemo(String serverUrl) {
this.client = new McpClient.Builder()
.setServerUrl(serverUrl)
.build();
this.contextManager = new ContextManager(client);
}
public void demonstrateRootContext() throws Exception {
// Create context metadata
Map<String, String> metadata = new HashMap<>();
metadata.put("projectName", "Financial Analysis");
metadata.put("userRole", "Financial Analyst");
metadata.put("dataSource", "Q1 2025 Financial Reports");
// 1. Create a new root context
RootContext context = contextManager.createRootContext("Financial Analysis Session", metadata);
String contextId = context.getId();
System.out.println("Created context: " + contextId);
// 2. First interaction
McpResponse response1 = client.sendPrompt(
"Analyze the trends in Q1 financial data for our technology division",
contextId
);
System.out.println("First response: " + response1.getGeneratedText());
// 3. Update context with important information gained from response
contextManager.addContextMetadata(contextId,
Map.of("identifiedTrend", "Increasing cloud infrastructure costs"));
// Second interaction - using the same context
McpResponse response2 = client.sendPrompt(
"What's driving the increase in cloud infrastructure costs?",
contextId
);
System.out.println("Second response: " + response2.getGeneratedText());
// 4. Generate a summary of the analysis session
McpResponse summaryResponse = client.sendPrompt(
"Summarize our analysis of the technology division financials in 3-5 key points",
contextId
);
// Store the summary in context metadata
contextManager.addContextMetadata(contextId,
Map.of("analysisSummary", summaryResponse.getGeneratedText()));
// Get updated context information
RootContext updatedContext = contextManager.getRootContext(contextId);
System.out.println("Context Information:");
System.out.println("- Created: " + updatedContext.getCreatedAt());
System.out.println("- Last Updated: " + updatedContext.getLastUpdatedAt());
System.out.println("- Analysis Summary: " +
updatedContext.getMetadata().get("analysisSummary"));
// 5. Archive context when done
contextManager.archiveContext(contextId);
System.out.println("Context archived");
}
}
在上述代码中,我们:
- 为金融分析会话创建了一个根上下文。
- 在该上下文中发送了多条消息,使模型能够维护状态。
- 根据对话更新了相关元数据。
- 生成了分析会话的摘要并存储在上下文元数据中。
- 在对话完成后归档了该上下文。
示例:根上下文管理
有效管理根上下文对于维护对话历史和状态至关重要。以下是实现根上下文管理的示例。
JavaScript 实现
// JavaScript Example: Managing MCP Root Contexts
const { McpClient, RootContextManager } = require('@mcp/client');
class ContextSession {
constructor(serverUrl, apiKey = null) {
// Initialize the MCP client
this.client = new McpClient({
serverUrl,
apiKey
});
// Initialize context manager
this.contextManager = new RootContextManager(this.client);
}
/**
* Create a new conversation context
* @param {string} sessionName - Name of the conversation session
* @param {Object} metadata - Additional metadata for the context
* @returns {Promise<string>} - Context ID
*/
async createConversationContext(sessionName, metadata = {}) {
try {
const contextResult = await this.contextManager.createRootContext({
name: sessionName,
metadata: {
...metadata,
createdAt: new Date().toISOString(),
status: 'active'
}
});
console.log(`Created root context '${sessionName}' with ID: ${contextResult.id}`);
return contextResult.id;
} catch (error) {
console.error('Error creating root context:', error);
throw error;
}
}
/**
* Send a message in an existing context
* @param {string} contextId - The root context ID
* @param {string} message - The user's message
* @param {Object} options - Additional options
* @returns {Promise<Object>} - Response data
*/
async sendMessage(contextId, message, options = {}) {
try {
// Send the message using the specified context
const response = await this.client.sendPrompt(message, {
rootContextId: contextId,
temperature: options.temperature || 0.7,
allowedTools: options.allowedTools || []
});
// Optionally store important insights from the conversation
if (options.storeInsights) {
await this.storeConversationInsights(contextId, message, response.generatedText);
}
return {
message: response.generatedText,
toolCalls: response.toolCalls || [],
contextId
};
} catch (error) {
console.error(`Error sending message in context ${contextId}:`, error);
throw error;
}
}
/**
* Store important insights from a conversation
* @param {string} contextId - The root context ID
* @param {string} userMessage - User's message
* @param {string} aiResponse - AI's response
*/
async storeConversationInsights(contextId, userMessage, aiResponse) {
try {
// Extract potential insights (in a real app, this would be more sophisticated)
const combinedText = userMessage + "\n" + aiResponse;
// Simple heuristic to identify potential insights
const insightWords = ["important", "key point", "remember", "significant", "crucial"];
const potentialInsights = combinedText
.split(".")
.filter(sentence =>
insightWords.some(word => sentence.toLowerCase().includes(word))
)
.map(sentence => sentence.trim())
.filter(sentence => sentence.length > 10);
// Store insights in context metadata
if (potentialInsights.length > 0) {
const insights = {};
potentialInsights.forEach((insight, index) => {
insights[`insight_${Date.now()}_${index}`] = insight;
});
await this.contextManager.updateContextMetadata(contextId, insights);
console.log(`Stored ${potentialInsights.length} insights in context ${contextId}`);
}
} catch (error) {
console.warn('Error storing conversation insights:', error);
// Non-critical error, so just log warning
}
}
/**
* Get summary information about a context
* @param {string} contextId - The root context ID
* @returns {Promise<Object>} - Context information
*/
async getContextInfo(contextId) {
try {
const contextInfo = await this.contextManager.getContextInfo(contextId);
return {
id: contextInfo.id,
name: contextInfo.name,
created: new Date(contextInfo.createdAt).toLocaleString(),
lastUpdated: new Date(contextInfo.lastUpdatedAt).toLocaleString(),
messageCount: contextInfo.messageCount,
metadata: contextInfo.metadata,
status: contextInfo.status
};
} catch (error) {
console.error(`Error getting context info for ${contextId}:`, error);
throw error;
}
}
/**
* Generate a summary of the conversation in a context
* @param {string} contextId - The root context ID
* @returns {Promise<string>} - Generated summary
*/
async generateContextSummary(contextId) {
try {
// Ask the model to generate a summary of the conversation so far
const response = await this.client.sendPrompt(
"Please summarize our conversation so far in 3-4 sentences, highlighting the main points discussed.",
{ rootContextId: contextId, temperature: 0.3 }
);
// Store the summary in context metadata
await this.contextManager.updateContextMetadata(contextId, {
conversationSummary: response.generatedText,
summarizedAt: new Date().toISOString()
});
return response.generatedText;
} catch (error) {
console.error(`Error generating context summary for ${contextId}:`, error);
throw error;
}
}
/**
* Archive a context when it's no longer needed
* @param {string} contextId - The root context ID
* @returns {Promise<Object>} - Result of the archive operation
*/
async archiveContext(contextId) {
try {
// Generate a final summary before archiving
const summary = await this.generateContextSummary(contextId);
// Archive the context
await this.contextManager.archiveContext(contextId);
return {
status: "archived",
contextId,
summary
};
} catch (error) {
console.error(`Error archiving context ${contextId}:`, error);
throw error;
}
}
}
// Example usage
async function demonstrateContextSession() {
const session = new ContextSession('https://mcp-server-example.com');
try {
// 1. Create a new context for a product support conversation
const contextId = await session.createConversationContext(
'Product Support - Database Performance',
{
customer: 'Globex Corporation',
product: 'Enterprise Database',
severity: 'Medium',
supportAgent: 'AI Assistant'
}
);
// 2. First message in the conversation
const response1 = await session.sendMessage(
contextId,
"I'm experiencing slow query performance on our database cluster after the latest update.",
{ storeInsights: true }
);
console.log('Response 1:', response1.message);
// Follow-up message in the same context
const response2 = await session.sendMessage(
contextId,
"Yes, we've already checked the indexes and they seem to be properly configured.",
{ storeInsights: true }
);
console.log('Response 2:', response2.message);
// 3. Get information about the context
const contextInfo = await session.getContextInfo(contextId);
console.log('Context Information:', contextInfo);
// 4. Generate and display conversation summary
const summary = await session.generateContextSummary(contextId);
console.log('Conversation Summary:', summary);
// 5. Archive the context when done
const archiveResult = await session.archiveContext(contextId);
console.log('Archive Result:', archiveResult);
// 6. Handle any errors gracefully
} catch (error) {
console.error('Error in context session demonstration:', error);
}
}
demonstrateContextSession();
在上述代码中,我们:
- 使用函数
createConversationContext
创建了一个关于数据库性能问题的产品支持对话根上下文。 - 使用函数
sendMessage
在该上下文中发送了多条消息,使模型能够维护状态。发送的消息涉及查询性能缓慢和索引配置。 - 根据对话更新了相关元数据。
- 使用函数
generateContextSummary
生成了对话摘要并存储在上下文元数据中。 - 使用函数
archiveContext
在对话完成后归档了该上下文。 - 优雅地处理了错误,确保系统的健壮性。
多轮辅助的根上下文
在此示例中,我们将为多轮辅助会话创建根上下文,演示如何在多次交互中维护状态。
Python 实现
# Python Example: Root Context for Multi-Turn Assistance
import asyncio
from datetime import datetime
from mcp_client import McpClient, RootContextManager
class AssistantSession:
def __init__(self, server_url, api_key=None):
self.client = McpClient(server_url=server_url, api_key=api_key)
self.context_manager = RootContextManager(self.client)
async def create_session(self, name, user_info=None):
"""Create a new root context for an assistant session"""
metadata = {
"session_type": "assistant",
"created_at": datetime.now().isoformat(),
}
# Add user information if provided
if user_info:
metadata.update({f"user_{k}": v for k, v in user_info.items()})
# Create the root context
context = await self.context_manager.create_root_context(name, metadata)
return context.id
async def send_message(self, context_id, message, tools=None):
"""Send a message within a root context"""
# Create options with context ID
options = {
"root_context_id": context_id
}
# Add tools if specified
if tools:
options["allowed_tools"] = tools
# Send the prompt within the context
response = await self.client.send_prompt(message, options)
# Update context metadata with conversation progress
await self.context_manager.update_context_metadata(
context_id,
{
f"message_{datetime.now().timestamp()}": message[:50] + "...",
"last_interaction": datetime.now().isoformat()
}
)
return response
async def get_conversation_history(self, context_id):
"""Retrieve conversation history from a context"""
context_info = await self.context_manager.get_context_info(context_id)
messages = await self.client.get_context_messages(context_id)
return {
"context_info": context_info,
"messages": messages
}
async def end_session(self, context_id):
"""End an assistant session by archiving the context"""
# Generate a summary prompt first
summary_response = await self.client.send_prompt(
"Please summarize our conversation and any key points or decisions made.",
{"root_context_id": context_id}
)
# Store summary in metadata
await self.context_manager.update_context_metadata(
context_id,
{
"summary": summary_response.generated_text,
"ended_at": datetime.now().isoformat(),
"status": "completed"
}
)
# Archive the context
await self.context_manager.archive_context(context_id)
return {
"status": "completed",
"summary": summary_response.generated_text
}
# Example usage
async def demo_assistant_session():
assistant = AssistantSession("https://mcp-server-example.com")
# 1. Create session
context_id = await assistant.create_session(
"Technical Support Session",
{"name": "Alex", "technical_level": "advanced", "product": "Cloud Services"}
)
print(f"Created session with context ID: {context_id}")
# 2. First interaction
response1 = await assistant.send_message(
context_id,
"I'm having trouble with the auto-scaling feature in your cloud platform.",
["documentation_search", "diagnostic_tool"]
)
print(f"Response 1: {response1.generated_text}")
# Second interaction in the same context
response2 = await assistant.send_message(
context_id,
"Yes, I've already checked the configuration settings you mentioned, but it's still not working."
)
print(f"Response 2: {response2.generated_text}")
# 3. Get history
history = await assistant.get_conversation_history(context_id)
print(f"Session has {len(history['messages'])} messages")
# 4. End session
end_result = await assistant.end_session(context_id)
print(f"Session ended with summary: {end_result['summary']}")
if __name__ == "__main__":
asyncio.run(demo_assistant_session())
在上述代码中,我们:
- 使用函数
create_session
为技术支持会话创建了根上下文。上下文包含用户信息,如姓名和技术水平。 - 使用函数
send_message
在该上下文中发送了多条消息,使模型能够维护状态。发送的消息涉及自动扩展功能的问题。 - 使用函数
get_conversation_history
检索了对话历史,获取上下文信息和消息。 - 使用函数
end_session
结束会话,归档上下文并生成摘要。摘要捕捉了对话的关键点。
根上下文最佳实践
以下是有效管理根上下文的一些最佳实践:
- 创建专注的上下文:针对不同的对话目的或领域创建独立的根上下文,以保持清晰。
- 设置过期策略:实施归档或删除旧上下文的策略,以管理存储并遵守数据保留政策。
- 存储相关元数据:利用上下文元数据存储对话中可能后续有用的重要信息。
- 一致使用上下文 ID:创建上下文后,所有相关请求都应一致使用该 ID,以保持连续性。
- 生成摘要:当上下文变大时,考虑生成摘要以捕捉关键信息,同时控制上下文大小。
- 实施访问控制:对于多用户系统,实施适当的访问控制,确保对话上下文的隐私和安全。
- 处理上下文限制:注意上下文大小限制,并制定策略应对超长对话。
- 完成时归档:对话完成后归档上下文,释放资源,同时保留对话历史。
接下来
免责声明:
本文件使用 AI 翻译服务 Co-op Translator 进行翻译。虽然我们力求准确,但请注意,自动翻译可能包含错误或不准确之处。原始文件的母语版本应被视为权威来源。对于重要信息,建议采用专业人工翻译。对于因使用本翻译而产生的任何误解或误释,我们概不负责。