初学者的模型上下文协议(MCP)课程

发表于 2025-08-12 12:52:05 | 已阅读: 79  次

MCP 根上下文

根上下文是模型上下文协议中的一个基本概念,提供了一个持久层,用于在多个请求和会话之间维护对话历史和共享状态。

介绍

在本课中,我们将探讨如何在 MCP 中创建、管理和使用根上下文。

学习目标

完成本课后,您将能够:

  • 理解根上下文的目的和结构
  • 使用 MCP 客户端库创建和管理根上下文
  • 在 .NET、Java、JavaScript 和 Python 应用中实现根上下文
  • 利用根上下文进行多轮对话和状态管理
  • 实施根上下文管理的最佳实践

理解根上下文

根上下文作为容器,保存一系列相关交互的历史和状态。它们支持:

  • 对话持久性:保持连贯的多轮对话
  • 记忆管理:跨交互存储和检索信息
  • 状态管理:跟踪复杂工作流的进展
  • 上下文共享:允许多个客户端访问相同的对话状态

在 MCP 中,根上下文具有以下关键特性:

  • 每个根上下文都有唯一标识符。
  • 可以包含对话历史、用户偏好及其他元数据。
  • 可以根据需要创建、访问和归档。
  • 支持细粒度的访问控制和权限管理。

根上下文生命周期

flowchart TD
    A[Create Root Context] --> B[Initialize with Metadata]
    B --> C[Send Requests with Context ID]
    C --> D[Update Context with Results]
    D --> C
    D --> E[Archive Context When Complete]

使用根上下文

下面是一个创建和管理根上下文的示例。

C# 实现

// .NET Example: Root Context Management
using Microsoft.Mcp.Client;
using System;
using System.Threading.Tasks;
using System.Collections.Generic;

public class RootContextExample
{
    private readonly IMcpClient _client;
    private readonly IRootContextManager _contextManager;
    
    public RootContextExample(IMcpClient client, IRootContextManager contextManager)
    {
        _client = client;
        _contextManager = contextManager;
    }
    
    public async Task DemonstrateRootContextAsync()
    {
        // 1. Create a new root context
        var contextResult = await _contextManager.CreateRootContextAsync(new RootContextCreateOptions
        {
            Name = "Customer Support Session",
            Metadata = new Dictionary<string, string>
            {
                ["CustomerName"] = "Acme Corporation",
                ["PriorityLevel"] = "High",
                ["Domain"] = "Cloud Services"
            }
        });
        
        string contextId = contextResult.ContextId;
        Console.WriteLine($"Created root context with ID: {contextId}");
        
        // 2. First interaction using the context
        var response1 = await _client.SendPromptAsync(
            "I'm having issues scaling my web service deployment in the cloud.", 
            new SendPromptOptions { RootContextId = contextId }
        );
        
        Console.WriteLine($"First response: {response1.GeneratedText}");
        
        // Second interaction - the model will have access to the previous conversation
        var response2 = await _client.SendPromptAsync(
            "Yes, we're using containerized deployments with Kubernetes.", 
            new SendPromptOptions { RootContextId = contextId }
        );
        
        Console.WriteLine($"Second response: {response2.GeneratedText}");
        
        // 3. Add metadata to the context based on conversation
        await _contextManager.UpdateContextMetadataAsync(contextId, new Dictionary<string, string>
        {
            ["TechnicalEnvironment"] = "Kubernetes",
            ["IssueType"] = "Scaling"
        });
        
        // 4. Get context information
        var contextInfo = await _contextManager.GetRootContextInfoAsync(contextId);
        
        Console.WriteLine("Context Information:");
        Console.WriteLine($"- Name: {contextInfo.Name}");
        Console.WriteLine($"- Created: {contextInfo.CreatedAt}");
        Console.WriteLine($"- Messages: {contextInfo.MessageCount}");
        
        // 5. When the conversation is complete, archive the context
        await _contextManager.ArchiveRootContextAsync(contextId);
        Console.WriteLine($"Archived context {contextId}");
    }
}

在上述代码中,我们:

  1. 为客户支持会话创建了一个根上下文。
  2. 在该上下文中发送了多条消息,使模型能够维护状态。
  3. 根据对话更新了相关元数据。
  4. 检索了上下文信息以了解对话历史。
  5. 在对话完成后归档了该上下文。

示例:金融分析的根上下文实现

在此示例中,我们将为金融分析会话创建根上下文,演示如何在多次交互中维护状态。

Java 实现

// Java Example: Root Context Implementation
package com.example.mcp.contexts;

import com.mcp.client.McpClient;
import com.mcp.client.ContextManager;
import com.mcp.models.RootContext;
import com.mcp.models.McpResponse;

import java.util.HashMap;
import java.util.Map;
import java.util.UUID;

public class RootContextsDemo {
    private final McpClient client;
    private final ContextManager contextManager;
    
    public RootContextsDemo(String serverUrl) {
        this.client = new McpClient.Builder()
            .setServerUrl(serverUrl)
            .build();
            
        this.contextManager = new ContextManager(client);
    }
    
    public void demonstrateRootContext() throws Exception {
        // Create context metadata
        Map<String, String> metadata = new HashMap<>();
        metadata.put("projectName", "Financial Analysis");
        metadata.put("userRole", "Financial Analyst");
        metadata.put("dataSource", "Q1 2025 Financial Reports");
        
        // 1. Create a new root context
        RootContext context = contextManager.createRootContext("Financial Analysis Session", metadata);
        String contextId = context.getId();
        
        System.out.println("Created context: " + contextId);
        
        // 2. First interaction
        McpResponse response1 = client.sendPrompt(
            "Analyze the trends in Q1 financial data for our technology division",
            contextId
        );
        
        System.out.println("First response: " + response1.getGeneratedText());
        
        // 3. Update context with important information gained from response
        contextManager.addContextMetadata(contextId, 
            Map.of("identifiedTrend", "Increasing cloud infrastructure costs"));
        
        // Second interaction - using the same context
        McpResponse response2 = client.sendPrompt(
            "What's driving the increase in cloud infrastructure costs?",
            contextId
        );
        
        System.out.println("Second response: " + response2.getGeneratedText());
        
        // 4. Generate a summary of the analysis session
        McpResponse summaryResponse = client.sendPrompt(
            "Summarize our analysis of the technology division financials in 3-5 key points",
            contextId
        );
        
        // Store the summary in context metadata
        contextManager.addContextMetadata(contextId, 
            Map.of("analysisSummary", summaryResponse.getGeneratedText()));
            
        // Get updated context information
        RootContext updatedContext = contextManager.getRootContext(contextId);
        
        System.out.println("Context Information:");
        System.out.println("- Created: " + updatedContext.getCreatedAt());
        System.out.println("- Last Updated: " + updatedContext.getLastUpdatedAt());
        System.out.println("- Analysis Summary: " + 
            updatedContext.getMetadata().get("analysisSummary"));
            
        // 5. Archive context when done
        contextManager.archiveContext(contextId);
        System.out.println("Context archived");
    }
}

在上述代码中,我们:

  1. 为金融分析会话创建了一个根上下文。
  2. 在该上下文中发送了多条消息,使模型能够维护状态。
  3. 根据对话更新了相关元数据。
  4. 生成了分析会话的摘要并存储在上下文元数据中。
  5. 在对话完成后归档了该上下文。

示例:根上下文管理

有效管理根上下文对于维护对话历史和状态至关重要。以下是实现根上下文管理的示例。

JavaScript 实现

// JavaScript Example: Managing MCP Root Contexts
const { McpClient, RootContextManager } = require('@mcp/client');

class ContextSession {
  constructor(serverUrl, apiKey = null) {
    // Initialize the MCP client
    this.client = new McpClient({
      serverUrl,
      apiKey
    });
    
    // Initialize context manager
    this.contextManager = new RootContextManager(this.client);
  }
  
  /**
   * Create a new conversation context
   * @param {string} sessionName - Name of the conversation session
   * @param {Object} metadata - Additional metadata for the context
   * @returns {Promise<string>} - Context ID
   */
  async createConversationContext(sessionName, metadata = {}) {
    try {
      const contextResult = await this.contextManager.createRootContext({
        name: sessionName,
        metadata: {
          ...metadata,
          createdAt: new Date().toISOString(),
          status: 'active'
        }
      });
      
      console.log(`Created root context '${sessionName}' with ID: ${contextResult.id}`);
      return contextResult.id;
    } catch (error) {
      console.error('Error creating root context:', error);
      throw error;
    }
  }
  
  /**
   * Send a message in an existing context
   * @param {string} contextId - The root context ID
   * @param {string} message - The user's message
   * @param {Object} options - Additional options
   * @returns {Promise<Object>} - Response data
   */
  async sendMessage(contextId, message, options = {}) {
    try {
      // Send the message using the specified context
      const response = await this.client.sendPrompt(message, {
        rootContextId: contextId,
        temperature: options.temperature || 0.7,
        allowedTools: options.allowedTools || []
      });
      
      // Optionally store important insights from the conversation
      if (options.storeInsights) {
        await this.storeConversationInsights(contextId, message, response.generatedText);
      }
      
      return {
        message: response.generatedText,
        toolCalls: response.toolCalls || [],
        contextId
      };
    } catch (error) {
      console.error(`Error sending message in context ${contextId}:`, error);
      throw error;
    }
  }
  
  /**
   * Store important insights from a conversation
   * @param {string} contextId - The root context ID
   * @param {string} userMessage - User's message
   * @param {string} aiResponse - AI's response
   */
  async storeConversationInsights(contextId, userMessage, aiResponse) {
    try {
      // Extract potential insights (in a real app, this would be more sophisticated)
      const combinedText = userMessage + "\n" + aiResponse;
      
      // Simple heuristic to identify potential insights
      const insightWords = ["important", "key point", "remember", "significant", "crucial"];
      
      const potentialInsights = combinedText
        .split(".")
        .filter(sentence => 
          insightWords.some(word => sentence.toLowerCase().includes(word))
        )
        .map(sentence => sentence.trim())
        .filter(sentence => sentence.length > 10);
      
      // Store insights in context metadata
      if (potentialInsights.length > 0) {
        const insights = {};
        potentialInsights.forEach((insight, index) => {
          insights[`insight_${Date.now()}_${index}`] = insight;
        });
        
        await this.contextManager.updateContextMetadata(contextId, insights);
        console.log(`Stored ${potentialInsights.length} insights in context ${contextId}`);
      }
    } catch (error) {
      console.warn('Error storing conversation insights:', error);
      // Non-critical error, so just log warning
    }
  }
  
  /**
   * Get summary information about a context
   * @param {string} contextId - The root context ID
   * @returns {Promise<Object>} - Context information
   */
  async getContextInfo(contextId) {
    try {
      const contextInfo = await this.contextManager.getContextInfo(contextId);
      
      return {
        id: contextInfo.id,
        name: contextInfo.name,
        created: new Date(contextInfo.createdAt).toLocaleString(),
        lastUpdated: new Date(contextInfo.lastUpdatedAt).toLocaleString(),
        messageCount: contextInfo.messageCount,
        metadata: contextInfo.metadata,
        status: contextInfo.status
      };
    } catch (error) {
      console.error(`Error getting context info for ${contextId}:`, error);
      throw error;
    }
  }
  
  /**
   * Generate a summary of the conversation in a context
   * @param {string} contextId - The root context ID
   * @returns {Promise<string>} - Generated summary
   */
  async generateContextSummary(contextId) {
    try {
      // Ask the model to generate a summary of the conversation so far
      const response = await this.client.sendPrompt(
        "Please summarize our conversation so far in 3-4 sentences, highlighting the main points discussed.",
        { rootContextId: contextId, temperature: 0.3 }
      );
      
      // Store the summary in context metadata
      await this.contextManager.updateContextMetadata(contextId, {
        conversationSummary: response.generatedText,
        summarizedAt: new Date().toISOString()
      });
      
      return response.generatedText;
    } catch (error) {
      console.error(`Error generating context summary for ${contextId}:`, error);
      throw error;
    }
  }
  
  /**
   * Archive a context when it's no longer needed
   * @param {string} contextId - The root context ID
   * @returns {Promise<Object>} - Result of the archive operation
   */
  async archiveContext(contextId) {
    try {
      // Generate a final summary before archiving
      const summary = await this.generateContextSummary(contextId);
      
      // Archive the context
      await this.contextManager.archiveContext(contextId);
      
      return {
        status: "archived",
        contextId,
        summary
      };
    } catch (error) {
      console.error(`Error archiving context ${contextId}:`, error);
      throw error;
    }
  }
}

// Example usage
async function demonstrateContextSession() {
  const session = new ContextSession('https://mcp-server-example.com');
  
  try {
    // 1. Create a new context for a product support conversation
    const contextId = await session.createConversationContext(
      'Product Support - Database Performance',
      {
        customer: 'Globex Corporation',
        product: 'Enterprise Database',
        severity: 'Medium',
        supportAgent: 'AI Assistant'
      }
    );
    
    // 2. First message in the conversation
    const response1 = await session.sendMessage(
      contextId,
      "I'm experiencing slow query performance on our database cluster after the latest update.",
      { storeInsights: true }
    );
    console.log('Response 1:', response1.message);
    
    // Follow-up message in the same context
    const response2 = await session.sendMessage(
      contextId,
      "Yes, we've already checked the indexes and they seem to be properly configured.",
      { storeInsights: true }
    );
    console.log('Response 2:', response2.message);
    
    // 3. Get information about the context
    const contextInfo = await session.getContextInfo(contextId);
    console.log('Context Information:', contextInfo);
    
    // 4. Generate and display conversation summary
    const summary = await session.generateContextSummary(contextId);
    console.log('Conversation Summary:', summary);
    
    // 5. Archive the context when done
    const archiveResult = await session.archiveContext(contextId);
    console.log('Archive Result:', archiveResult);
    
    // 6. Handle any errors gracefully
  } catch (error) {
    console.error('Error in context session demonstration:', error);
  }
}

demonstrateContextSession();

在上述代码中,我们:

  1. 使用函数 createConversationContext 创建了一个关于数据库性能问题的产品支持对话根上下文。
  2. 使用函数 sendMessage 在该上下文中发送了多条消息,使模型能够维护状态。发送的消息涉及查询性能缓慢和索引配置。
  3. 根据对话更新了相关元数据。
  4. 使用函数 generateContextSummary 生成了对话摘要并存储在上下文元数据中。
  5. 使用函数 archiveContext 在对话完成后归档了该上下文。
  6. 优雅地处理了错误,确保系统的健壮性。

多轮辅助的根上下文

在此示例中,我们将为多轮辅助会话创建根上下文,演示如何在多次交互中维护状态。

Python 实现

# Python Example: Root Context for Multi-Turn Assistance
import asyncio
from datetime import datetime
from mcp_client import McpClient, RootContextManager

class AssistantSession:
    def __init__(self, server_url, api_key=None):
        self.client = McpClient(server_url=server_url, api_key=api_key)
        self.context_manager = RootContextManager(self.client)
    
    async def create_session(self, name, user_info=None):
        """Create a new root context for an assistant session"""
        metadata = {
            "session_type": "assistant",
            "created_at": datetime.now().isoformat(),
        }
        
        # Add user information if provided
        if user_info:
            metadata.update({f"user_{k}": v for k, v in user_info.items()})
            
        # Create the root context
        context = await self.context_manager.create_root_context(name, metadata)
        return context.id
    
    async def send_message(self, context_id, message, tools=None):
        """Send a message within a root context"""
        # Create options with context ID
        options = {
            "root_context_id": context_id
        }
        
        # Add tools if specified
        if tools:
            options["allowed_tools"] = tools
        
        # Send the prompt within the context
        response = await self.client.send_prompt(message, options)
        
        # Update context metadata with conversation progress
        await self.context_manager.update_context_metadata(
            context_id,
            {
                f"message_{datetime.now().timestamp()}": message[:50] + "...",
                "last_interaction": datetime.now().isoformat()
            }
        )
        
        return response
    
    async def get_conversation_history(self, context_id):
        """Retrieve conversation history from a context"""
        context_info = await self.context_manager.get_context_info(context_id)
        messages = await self.client.get_context_messages(context_id)
        
        return {
            "context_info": context_info,
            "messages": messages
        }
    
    async def end_session(self, context_id):
        """End an assistant session by archiving the context"""
        # Generate a summary prompt first
        summary_response = await self.client.send_prompt(
            "Please summarize our conversation and any key points or decisions made.",
            {"root_context_id": context_id}
        )
        
        # Store summary in metadata
        await self.context_manager.update_context_metadata(
            context_id,
            {
                "summary": summary_response.generated_text,
                "ended_at": datetime.now().isoformat(),
                "status": "completed"
            }
        )
        
        # Archive the context
        await self.context_manager.archive_context(context_id)
        
        return {
            "status": "completed",
            "summary": summary_response.generated_text
        }

# Example usage
async def demo_assistant_session():
    assistant = AssistantSession("https://mcp-server-example.com")
    
    # 1. Create session
    context_id = await assistant.create_session(
        "Technical Support Session",
        {"name": "Alex", "technical_level": "advanced", "product": "Cloud Services"}
    )
    print(f"Created session with context ID: {context_id}")
    
    # 2. First interaction
    response1 = await assistant.send_message(
        context_id, 
        "I'm having trouble with the auto-scaling feature in your cloud platform.",
        ["documentation_search", "diagnostic_tool"]
    )
    print(f"Response 1: {response1.generated_text}")
    
    # Second interaction in the same context
    response2 = await assistant.send_message(
        context_id,
        "Yes, I've already checked the configuration settings you mentioned, but it's still not working."
    )
    print(f"Response 2: {response2.generated_text}")
    
    # 3. Get history
    history = await assistant.get_conversation_history(context_id)
    print(f"Session has {len(history['messages'])} messages")
    
    # 4. End session
    end_result = await assistant.end_session(context_id)
    print(f"Session ended with summary: {end_result['summary']}")

if __name__ == "__main__":
    asyncio.run(demo_assistant_session())

在上述代码中,我们:

  1. 使用函数 create_session 为技术支持会话创建了根上下文。上下文包含用户信息,如姓名和技术水平。
  2. 使用函数 send_message 在该上下文中发送了多条消息,使模型能够维护状态。发送的消息涉及自动扩展功能的问题。
  3. 使用函数 get_conversation_history 检索了对话历史,获取上下文信息和消息。
  4. 使用函数 end_session 结束会话,归档上下文并生成摘要。摘要捕捉了对话的关键点。

根上下文最佳实践

以下是有效管理根上下文的一些最佳实践:

  • 创建专注的上下文:针对不同的对话目的或领域创建独立的根上下文,以保持清晰。
  • 设置过期策略:实施归档或删除旧上下文的策略,以管理存储并遵守数据保留政策。
  • 存储相关元数据:利用上下文元数据存储对话中可能后续有用的重要信息。
  • 一致使用上下文 ID:创建上下文后,所有相关请求都应一致使用该 ID,以保持连续性。
  • 生成摘要:当上下文变大时,考虑生成摘要以捕捉关键信息,同时控制上下文大小。
  • 实施访问控制:对于多用户系统,实施适当的访问控制,确保对话上下文的隐私和安全。
  • 处理上下文限制:注意上下文大小限制,并制定策略应对超长对话。
  • 完成时归档:对话完成后归档上下文,释放资源,同时保留对话历史。

接下来

免责声明
本文件使用 AI 翻译服务 Co-op Translator 进行翻译。虽然我们力求准确,但请注意,自动翻译可能包含错误或不准确之处。原始文件的母语版本应被视为权威来源。对于重要信息,建议采用专业人工翻译。对于因使用本翻译而产生的任何误解或误释,我们概不负责。