社区与贡献
(点击上方图片观看本课视频)
概述
本课重点介绍如何参与 MCP 社区、为 MCP 生态系统做出贡献,以及在协作开发中遵循最佳实践。了解如何参与开源 MCP 项目对于希望推动该技术发展的个人至关重要。
学习目标
完成本课后,您将能够:
- 理解 MCP 社区和生态系统的结构
- 有效参与 MCP 社区论坛和讨论
- 为 MCP 开源仓库做出贡献
- 创建并分享自定义 MCP 工具和服务器
- 遵循 MCP 开发和协作的最佳实践
- 探索 MCP 开发的社区资源和框架
MCP 社区生态系统
MCP 生态系统由多个组件和参与者组成,他们共同推动协议的发展。
主要社区组成部分
- 核心协议维护者:官方 Model Context Protocol GitHub 组织 负责维护 MCP 核心规范和参考实现
- 工具开发者:创建 MCP 工具和服务器的个人或团队
- 集成提供商:将 MCP 集成到其产品和服务中的公司
- 终端用户:在其应用中使用 MCP 的开发者和组织
- 贡献者:为代码、文档或其他资源做出贡献的社区成员
社区资源
官方渠道
社区驱动资源
- MCP 客户端 - 支持 MCP 集成的客户端列表
- 社区 MCP 服务器 - 不断增长的社区开发 MCP 服务器列表
- Awesome MCP Servers - 精选 MCP 服务器列表
- PulseMCP - MCP 资源发现的社区中心和新闻简报
- Discord 服务器 - 与 MCP 开发者交流
- 特定语言的 SDK 实现
- 博客文章和教程
为 MCP 做贡献
贡献类型
MCP 生态系统欢迎多种形式的贡献:
- 代码贡献:
- 核心协议增强
- Bug 修复
- 工具和服务器实现
- 不同语言的客户端/服务器库
- 文档:
- 改进现有文档
- 创建教程和指南
- 翻译文档
- 创建示例和样本应用
- 社区支持:
- 在论坛和讨论中回答问题
- 测试并报告问题
- 组织社区活动
- 指导新贡献者
核心协议贡献流程
要为 MCP 核心协议或官方实现做贡献,请遵循 官方贡献指南 中的原则:
- 简洁与极简:MCP 规范对新增概念保持高标准。添加内容比移除内容更容易。
- 具体方法:规范更改应基于具体的实现挑战,而非假设性想法。
- 提案阶段:
- 定义:探索问题领域,验证其他 MCP 用户是否面临类似问题
- 原型:构建示例解决方案并展示其实用性
- 编写:基于原型撰写规范提案
开发环境设置
# Fork the repository
git clone https://github.com/YOUR-USERNAME/modelcontextprotocol.git
cd modelcontextprotocol
# Install dependencies
npm install
# For schema changes, validate and generate schema.json:
npm run check:schema:ts
npm run generate:schema
# For documentation changes
npm run check:docs
npm run format
# Preview documentation locally (optional):
npm run serve:docs
示例:贡献 Bug 修复
// Original code with bug in the typescript-sdk
export function validateResource(resource: unknown): resource is MCPResource {
if (!resource || typeof resource !== 'object') {
return false;
}
// Bug: Missing property validation
// Current implementation:
const hasName = 'name' in resource;
const hasSchema = 'schema' in resource;
return hasName && hasSchema;
}
// Fixed implementation in a contribution
export function validateResource(resource: unknown): resource is MCPResource {
if (!resource || typeof resource !== 'object') {
return false;
}
// Improved validation
const hasName = 'name' in resource && typeof (resource as MCPResource).name === 'string';
const hasSchema = 'schema' in resource && typeof (resource as MCPResource).schema === 'object';
const hasDescription = !('description' in resource) || typeof (resource as MCPResource).description === 'string';
return hasName && hasSchema && hasDescription;
}
示例:向标准库贡献新工具
# Example contribution: A CSV data processing tool for the MCP standard library
from mcp_tools import Tool, ToolRequest, ToolResponse, ToolExecutionException
import pandas as pd
import io
import json
from typing import Dict, Any, List, Optional
class CsvProcessingTool(Tool):
"""
Tool for processing and analyzing CSV data.
This tool allows models to extract information from CSV files,
run basic analysis, and convert data between formats.
"""
def get_name(self):
return "csvProcessor"
def get_description(self):
return "Processes and analyzes CSV data"
def get_schema(self):
return {
"type": "object",
"properties": {
"csvData": {
"type": "string",
"description": "CSV data as a string"
},
"csvUrl": {
"type": "string",
"description": "URL to a CSV file (alternative to csvData)"
},
"operation": {
"type": "string",
"enum": ["summary", "filter", "transform", "convert"],
"description": "Operation to perform on the CSV data"
},
"filterColumn": {
"type": "string",
"description": "Column to filter by (for filter operation)"
},
"filterValue": {
"type": "string",
"description": "Value to filter for (for filter operation)"
},
"outputFormat": {
"type": "string",
"enum": ["json", "csv", "markdown"],
"default": "json",
"description": "Output format for the processed data"
}
},
"oneOf": [
{"required": ["csvData", "operation"]},
{"required": ["csvUrl", "operation"]}
]
}
async def execute_async(self, request: ToolRequest) -> ToolResponse:
try:
# Extract parameters
operation = request.parameters.get("operation")
output_format = request.parameters.get("outputFormat", "json")
# Get CSV data from either direct data or URL
df = await self._get_dataframe(request)
# Process based on requested operation
result = {}
if operation == "summary":
result = self._generate_summary(df)
elif operation == "filter":
column = request.parameters.get("filterColumn")
value = request.parameters.get("filterValue")
if not column:
raise ToolExecutionException("filterColumn is required for filter operation")
result = self._filter_data(df, column, value)
elif operation == "transform":
result = self._transform_data(df, request.parameters)
elif operation == "convert":
result = self._convert_format(df, output_format)
else:
raise ToolExecutionException(f"Unknown operation: {operation}")
return ToolResponse(result=result)
except Exception as e:
raise ToolExecutionException(f"CSV processing failed: {str(e)}")
async def _get_dataframe(self, request: ToolRequest) -> pd.DataFrame:
"""Gets a pandas DataFrame from either CSV data or URL"""
if "csvData" in request.parameters:
csv_data = request.parameters.get("csvData")
return pd.read_csv(io.StringIO(csv_data))
elif "csvUrl" in request.parameters:
csv_url = request.parameters.get("csvUrl")
return pd.read_csv(csv_url)
else:
raise ToolExecutionException("Either csvData or csvUrl must be provided")
def _generate_summary(self, df: pd.DataFrame) -> Dict[str, Any]:
"""Generates a summary of the CSV data"""
return {
"columns": df.columns.tolist(),
"rowCount": len(df),
"columnCount": len(df.columns),
"numericColumns": df.select_dtypes(include=['number']).columns.tolist(),
"categoricalColumns": df.select_dtypes(include=['object']).columns.tolist(),
"sampleRows": json.loads(df.head(5).to_json(orient="records")),
"statistics": json.loads(df.describe().to_json())
}
def _filter_data(self, df: pd.DataFrame, column: str, value: str) -> Dict[str, Any]:
"""Filters the DataFrame by a column value"""
if column not in df.columns:
raise ToolExecutionException(f"Column '{column}' not found")
filtered_df = df[df[column].astype(str).str.contains(value)]
return {
"originalRowCount": len(df),
"filteredRowCount": len(filtered_df),
"data": json.loads(filtered_df.to_json(orient="records"))
}
def _transform_data(self, df: pd.DataFrame, params: Dict[str, Any]) -> Dict[str, Any]:
"""Transforms the data based on parameters"""
# Implementation would include various transformations
return {
"status": "success",
"message": "Transformation applied"
}
def _convert_format(self, df: pd.DataFrame, format: str) -> Dict[str, Any]:
"""Converts the DataFrame to different formats"""
if format == "json":
return {
"data": json.loads(df.to_json(orient="records")),
"format": "json"
}
elif format == "csv":
return {
"data": df.to_csv(index=False),
"format": "csv"
}
elif format == "markdown":
return {
"data": df.to_markdown(),
"format": "markdown"
}
else:
raise ToolExecutionException(f"Unsupported output format: {format}")
贡献指南
成功为 MCP 项目做出贡献的建议:
- 从小处开始:从文档、Bug 修复或小型增强入手
- 遵循风格指南:遵守项目的编码风格和约定
- 编写测试:为代码贡献添加单元测试
- 记录工作:为新功能或更改添加清晰的文档
- 提交有针对性的 PR:确保每个 PR 专注于单一问题或功能
- 积极响应反馈:对贡献的反馈保持积极响应
示例贡献工作流
# Clone the repository
git clone https://github.com/modelcontextprotocol/typescript-sdk.git
cd typescript-sdk
# Create a new branch for your contribution
git checkout -b feature/my-contribution
# Make your changes
# ...
# Run tests to ensure your changes don't break existing functionality
npm test
# Commit your changes with a descriptive message
git commit -am "Fix validation in resource handler"
# Push your branch to your fork
git push origin feature/my-contribution
# Create a pull request from your branch to the main repository
# Then engage with feedback and iterate on your PR as needed
创建并分享 MCP 服务器
创建并分享自定义 MCP 服务器是为 MCP 生态系统做出贡献的最有价值方式之一。社区已经开发了数百个用于各种服务和用例的服务器。
MCP 服务器开发框架
以下框架可简化 MCP 服务器开发:
- 官方 SDK:
- 社区框架:
- MCP-Framework - 使用 TypeScript 快速优雅地构建 MCP 服务器
- MCP Declarative Java SDK - 基于注解的 Java MCP 服务器
- Quarkus MCP Server SDK - Java MCP 服务器框架
- Next.js MCP Server Template - 用于 MCP 服务器的 Next.js 项目模板
开发可共享工具
.NET 示例:创建可共享工具包
// Create a new .NET library project
// dotnet new classlib -n McpFinanceTools
using Microsoft.Mcp.Tools;
using System.Threading.Tasks;
using System.Net.Http;
using System.Text.Json;
namespace McpFinanceTools
{
// Stock quote tool
public class StockQuoteTool : IMcpTool
{
private readonly HttpClient _httpClient;
public StockQuoteTool(HttpClient httpClient = null)
{
_httpClient = httpClient ?? new HttpClient();
}
public string Name => "stockQuote";
public string Description => "Gets current stock quotes for specified symbols";
public object GetSchema()
{
return new {
type = "object",
properties = new {
symbol = new {
type = "string",
description = "Stock symbol (e.g., MSFT, AAPL)"
},
includeHistory = new {
type = "boolean",
description = "Whether to include historical data",
default = false
}
},
required = new[] { "symbol" }
};
}
public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
{
// Extract parameters
string symbol = request.Parameters.GetProperty("symbol").GetString();
bool includeHistory = false;
if (request.Parameters.TryGetProperty("includeHistory", out var historyProp))
{
includeHistory = historyProp.GetBoolean();
}
// Call external API (example)
var quoteResult = await GetStockQuoteAsync(symbol);
// Add historical data if requested
if (includeHistory)
{
var historyData = await GetStockHistoryAsync(symbol);
quoteResult.Add("history", historyData);
}
// Return formatted result
return new ToolResponse {
Result = JsonSerializer.SerializeToElement(quoteResult)
};
}
private async Task<Dictionary<string, object>> GetStockQuoteAsync(string symbol)
{
// Implementation would call a real stock API
// This is a simplified example
return new Dictionary<string, object>
{
["symbol"] = symbol,
["price"] = 123.45,
["change"] = 2.5,
["percentChange"] = 1.2,
["lastUpdated"] = DateTime.UtcNow
};
}
private async Task<object> GetStockHistoryAsync(string symbol)
{
// Implementation would get historical data
// Simplified example
return new[]
{
new { date = DateTime.Now.AddDays(-7).Date, price = 120.25 },
new { date = DateTime.Now.AddDays(-6).Date, price = 122.50 },
new { date = DateTime.Now.AddDays(-5).Date, price = 121.75 }
// More historical data...
};
}
}
}
// Create package and publish to NuGet
// dotnet pack -c Release
// dotnet nuget push bin/Release/McpFinanceTools.1.0.0.nupkg -s https://api.nuget.org/v3/index.json -k YOUR_API_KEY
Java 示例:为工具创建 Maven 包
// pom.xml configuration for a shareable MCP tool package
<!--
<project>
<groupId>com.example</groupId>
<artifactId>mcp-weather-tools</artifactId>
<version>1.0.0</version>
<dependencies>
<dependency>
<groupId>com.mcp</groupId>
<artifactId>mcp-server</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
<distributionManagement>
<repository>
<id>github</id>
<name>GitHub Packages</name>
<url>https://maven.pkg.github.com/username/mcp-weather-tools</url>
</repository>
</distributionManagement>
</project>
-->
package com.example.mcp.weather;
import com.mcp.tools.Tool;
import com.mcp.tools.ToolRequest;
import com.mcp.tools.ToolResponse;
import com.mcp.tools.ToolExecutionException;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;
public class WeatherForecastTool implements Tool {
private final HttpClient httpClient;
private final String apiKey;
public WeatherForecastTool(String apiKey) {
this.httpClient = HttpClient.newHttpClient();
this.apiKey = apiKey;
}
@Override
public String getName() {
return "weatherForecast";
}
@Override
public String getDescription() {
return "Gets weather forecast for a specified location";
}
@Override
public Object getSchema() {
Map<String, Object> schema = new HashMap<>();
// Schema definition...
return schema;
}
@Override
public ToolResponse execute(ToolRequest request) {
try {
String location = request.getParameters().get("location").asText();
int days = request.getParameters().has("days") ?
request.getParameters().get("days").asInt() : 3;
// Call weather API
Map<String, Object> forecast = getForecast(location, days);
// Build response
return new ToolResponse.Builder()
.setResult(forecast)
.build();
} catch (Exception ex) {
throw new ToolExecutionException("Weather forecast failed: " + ex.getMessage(), ex);
}
}
private Map<String, Object> getForecast(String location, int days) {
// Implementation would call weather API
// Simplified example
Map<String, Object> result = new HashMap<>();
// Add forecast data...
return result;
}
}
// Build and publish using Maven
// mvn clean package
// mvn deploy
Python 示例:发布 PyPI 包
# Directory structure for a PyPI package:
# mcp_nlp_tools/
# ├── LICENSE
# ├── README.md
# ├── setup.py
# ├── mcp_nlp_tools/
# │ ├── __init__.py
# │ ├── sentiment_tool.py
# │ └── translation_tool.py
# Example setup.py
"""
from setuptools import setup, find_packages
setup(
name="mcp_nlp_tools",
version="0.1.0",
packages=find_packages(),
install_requires=[
"mcp_server>=1.0.0",
"transformers>=4.0.0",
"torch>=1.8.0"
],
author="Your Name",
author_email="your.email@example.com",
description="MCP tools for natural language processing tasks",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
url="https://github.com/username/mcp_nlp_tools",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.8",
)
"""
# Example NLP tool implementation (sentiment_tool.py)
from mcp_tools import Tool, ToolRequest, ToolResponse, ToolExecutionException
from transformers import pipeline
import torch
class SentimentAnalysisTool(Tool):
"""MCP tool for sentiment analysis of text"""
def __init__(self, model_name="distilbert-base-uncased-finetuned-sst-2-english"):
# Load the sentiment analysis model
self.sentiment_analyzer = pipeline("sentiment-analysis", model=model_name)
def get_name(self):
return "sentimentAnalysis"
def get_description(self):
return "Analyzes the sentiment of text, classifying it as positive or negative"
def get_schema(self):
return {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The text to analyze for sentiment"
},
"includeScore": {
"type": "boolean",
"description": "Whether to include confidence scores",
"default": True
}
},
"required": ["text"]
}
async def execute_async(self, request: ToolRequest) -> ToolResponse:
try:
# Extract parameters
text = request.parameters.get("text")
include_score = request.parameters.get("includeScore", True)
# Analyze sentiment
sentiment_result = self.sentiment_analyzer(text)[0]
# Format result
result = {
"sentiment": sentiment_result["label"],
"text": text
}
if include_score:
result["score"] = sentiment_result["score"]
# Return result
return ToolResponse(result=result)
except Exception as e:
raise ToolExecutionException(f"Sentiment analysis failed: {str(e)}")
# To publish:
# python setup.py sdist bdist_wheel
# python -m twine upload dist/*
分享最佳实践
与社区分享 MCP 工具时:
- 完整文档:
- 记录工具的用途、用法和示例
- 解释参数和返回值
- 记录任何外部依赖
- 错误处理:
- 实现健壮的错误处理
- 提供有用的错误信息
- 优雅地处理边界情况
- 性能考虑:
- 优化速度和资源使用
- 在适当情况下实现缓存
- 考虑可扩展性
- 安全性:
- 使用安全的 API 密钥和认证
- 验证和清理输入
- 为外部 API 调用实现速率限制
- 测试:
- 包括全面的测试覆盖率
- 测试不同的输入类型和边界情况
- 记录测试流程
社区协作与最佳实践
有效的协作是 MCP 生态系统繁荣的关键。
沟通渠道
- GitHub Issues 和 Discussions
- Microsoft Tech Community
- Discord 和 Slack 频道
- Stack Overflow(标签:
model-context-protocol
或mcp
)
代码审查
审查 MCP 贡献时:
- 清晰性:代码是否清晰且有良好文档?
- 正确性:代码是否按预期工作?
- 一致性:是否遵循项目约定?
- 完整性:是否包含测试和文档?
- 安全性:是否存在安全隐患?
版本兼容性
开发 MCP 时:
- 协议版本控制:遵循工具支持的 MCP 协议版本
- 客户端兼容性:考虑向后兼容性
- 服务器兼容性:遵循服务器实现指南
- 重大更改:清晰记录任何重大更改
示例社区项目:MCP 工具注册表
开发一个公共 MCP 工具注册表是一个重要的社区贡献。
# Example schema for a community tool registry API
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel, Field, HttpUrl
from typing import List, Optional
import datetime
import uuid
# Models for the tool registry
class ToolSchema(BaseModel):
"""JSON Schema for a tool"""
type: str
properties: dict
required: List[str] = []
class ToolRegistration(BaseModel):
"""Information for registering a tool"""
name: str = Field(..., description="Unique name for the tool")
description: str = Field(..., description="Description of what the tool does")
version: str = Field(..., description="Semantic version of the tool")
schema: ToolSchema = Field(..., description="JSON Schema for tool parameters")
author: str = Field(..., description="Author of the tool")
repository: Optional[HttpUrl] = Field(None, description="Repository URL")
documentation: Optional[HttpUrl] = Field(None, description="Documentation URL")
package: Optional[HttpUrl] = Field(None, description="Package URL")
tags: List[str] = Field(default_factory=list, description="Tags for categorization")
examples: List[dict] = Field(default_factory=list, description="Example usage")
class Tool(ToolRegistration):
"""Tool with registry metadata"""
id: uuid.UUID = Field(default_factory=uuid.uuid4)
created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
downloads: int = Field(default=0)
rating: float = Field(default=0.0)
ratings_count: int = Field(default=0)
# FastAPI application for the registry
app = FastAPI(title="MCP Tool Registry")
# In-memory database for this example
tools_db = {}
@app.post("/tools", response_model=Tool)
async def register_tool(tool: ToolRegistration):
"""Register a new tool in the registry"""
if tool.name in tools_db:
raise HTTPException(status_code=400, detail=f"Tool '{tool.name}' already exists")
new_tool = Tool(**tool.dict())
tools_db[tool.name] = new_tool
return new_tool
@app.get("/tools", response_model=List[Tool])
async def list_tools(tag: Optional[str] = None):
"""List all registered tools, optionally filtered by tag"""
if tag:
return [tool for tool in tools_db.values() if tag in tool.tags]
return list(tools_db.values())
@app.get("/tools/{tool_name}", response_model=Tool)
async def get_tool(tool_name: str):
"""Get information about a specific tool"""
if tool_name not in tools_db:
raise HTTPException(status_code=404, detail=f"Tool '{tool_name}' not found")
return tools_db[tool_name]
@app.delete("/tools/{tool_name}")
async def delete_tool(tool_name: str):
"""Delete a tool from the registry"""
if tool_name not in tools_db:
raise HTTPException(status_code=404, detail=f"Tool '{tool_name}' not found")
del tools_db[tool_name]
return {"message": f"Tool '{tool_name}' deleted"}
关键要点
- MCP 社区多元化,欢迎各种形式的贡献
- 对 MCP 的贡献可以从核心协议增强到自定义工具
- 遵循贡献指南可提高 PR 被接受的可能性
- 创建并分享 MCP 工具是增强生态系统的宝贵方式
- 社区协作对 MCP 的发展和改进至关重要
练习
- 根据您的技能和兴趣,确定 MCP 生态系统中您可以做出贡献的领域
- Fork MCP 仓库并设置本地开发环境
- 创建一个小型增强、Bug 修复或工具,为社区带来益处
- 使用适当的测试和文档记录您的贡献
- 向相关仓库提交 Pull Request
附加资源
下一课:早期采用的经验教训
免责声明:
本文档使用AI翻译服务Co-op Translator进行翻译。虽然我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。