初学者的模型上下文协议(MCP)课程

发表于 2025-08-12 12:52:05 | 已阅读: 98  次

MCP开发最佳实践

MCP开发最佳实践

(点击上方图片观看本课视频)

概述

本课重点介绍在生产环境中开发、测试和部署MCP服务器及功能的高级最佳实践。随着MCP生态系统的复杂性和重要性不断增加,遵循既定模式可以确保其可靠性、可维护性和互操作性。本课汇集了从实际MCP实施中获得的实用经验,指导您创建强大、高效的服务器,并提供有效的资源、提示和工具。

学习目标

完成本课后,您将能够:

  • 在MCP服务器和功能设计中应用行业最佳实践
  • 制定全面的MCP服务器测试策略
  • 为复杂的MCP应用设计高效、可重用的工作流模式
  • 在MCP服务器中实施正确的错误处理、日志记录和可观测性
  • 优化MCP实现的性能、安全性和可维护性

MCP核心原则

在深入具体的实施实践之前,了解指导有效MCP开发的核心原则非常重要:

  1. 标准化通信:MCP以JSON-RPC 2.0为基础,为所有实现提供一致的请求、响应和错误处理格式。
  2. 以用户为中心的设计:始终优先考虑用户的同意、控制和透明度。
  3. 安全至上:实施强大的安全措施,包括身份验证、授权、验证和速率限制。
  4. 模块化架构:以模块化方式设计MCP服务器,每个工具和资源都有明确且专注的用途。
  5. 有状态连接:利用MCP在多个请求之间保持状态的能力,实现更连贯和上下文感知的交互。

官方MCP最佳实践

以下最佳实践来源于官方的Model Context Protocol文档:

安全最佳实践

  1. 用户同意与控制:在访问数据或执行操作之前,始终要求用户明确同意。提供清晰的控制,决定共享哪些数据以及授权哪些操作。
  2. 数据隐私:仅在用户明确同意的情况下公开数据,并通过适当的访问控制保护数据。防止未经授权的数据传输。
  3. 工具安全性:在调用任何工具之前,要求用户明确同意。确保用户了解每个工具的功能,并实施强大的安全边界。
  4. 工具权限控制:配置模型在会话期间允许使用的工具,确保只有明确授权的工具可访问。
  5. 身份验证:在使用API密钥、OAuth令牌或其他安全身份验证方法访问工具、资源或敏感操作之前,要求进行适当的身份验证。
  6. 参数验证:对所有工具调用强制执行验证,防止格式错误或恶意输入到达工具实现。
  7. 速率限制:实施速率限制以防止滥用并确保服务器资源的公平使用。

实施最佳实践

  1. 能力协商:在连接设置期间,交换有关支持的功能、协议版本、可用工具和资源的信息。
  2. 工具设计:创建专注的工具,专注于做好一件事,而不是处理多个问题的单一工具。
  3. 错误处理:实施标准化的错误消息和代码,以帮助诊断问题、优雅地处理故障并提供可操作的反馈。
  4. 日志记录:配置结构化日志以审计、调试和监控协议交互。
  5. 进度跟踪:对于长时间运行的操作,报告进度更新以支持响应式用户界面。
  6. 请求取消:允许客户端取消不再需要或耗时过长的正在进行的请求。

其他参考资料

有关MCP最佳实践的最新信息,请参考:

实际实施示例

工具设计最佳实践

1. 单一职责原则

每个MCP工具都应有明确且专注的用途。与其创建试图处理多个问题的单一工具,不如开发专注于特定任务的专业工具。

// A focused tool that does one thing well
public class WeatherForecastTool : ITool
{
    private readonly IWeatherService _weatherService;
    
    public WeatherForecastTool(IWeatherService weatherService)
    {
        _weatherService = weatherService;
    }
    
    public string Name => "weatherForecast";
    public string Description => "Gets weather forecast for a specific location";
    
    public ToolDefinition GetDefinition()
    {
        return new ToolDefinition
        {
            Name = Name,
            Description = Description,
            Parameters = new Dictionary<string, ParameterDefinition>
            {
                ["location"] = new ParameterDefinition
                {
                    Type = ParameterType.String,
                    Description = "City or location name"
                },
                ["days"] = new ParameterDefinition
                {
                    Type = ParameterType.Integer,
                    Description = "Number of forecast days",
                    Default = 3
                }
            },
            Required = new[] { "location" }
        };
    }
    
    public async Task<ToolResponse> ExecuteAsync(IDictionary<string, object> parameters)
    {
        var location = parameters["location"].ToString();
        var days = parameters.ContainsKey("days") 
            ? Convert.ToInt32(parameters["days"]) 
            : 3;
            
        var forecast = await _weatherService.GetForecastAsync(location, days);
        
        return new ToolResponse
        {
            Content = new List<ContentItem>
            {
                new TextContent(JsonSerializer.Serialize(forecast))
            }
        };
    }
}

2. 一致的错误处理

实施强大的错误处理,提供信息丰富的错误消息和适当的恢复机制。

# Python example with comprehensive error handling
class DataQueryTool:
    def get_name(self):
        return "dataQuery"
        
    def get_description(self):
        return "Queries data from specified database tables"
    
    async def execute(self, parameters):
        try:
            # Parameter validation
            if "query" not in parameters:
                raise ToolParameterError("Missing required parameter: query")
                
            query = parameters["query"]
            
            # Security validation
            if self._contains_unsafe_sql(query):
                raise ToolSecurityError("Query contains potentially unsafe SQL")
            
            try:
                # Database operation with timeout
                async with timeout(10):  # 10 second timeout
                    result = await self._database.execute_query(query)
                    
                return ToolResponse(
                    content=[TextContent(json.dumps(result))]
                )
            except asyncio.TimeoutError:
                raise ToolExecutionError("Database query timed out after 10 seconds")
            except DatabaseConnectionError as e:
                # Connection errors might be transient
                self._log_error("Database connection error", e)
                raise ToolExecutionError(f"Database connection error: {str(e)}")
            except DatabaseQueryError as e:
                # Query errors are likely client errors
                self._log_error("Database query error", e)
                raise ToolExecutionError(f"Invalid query: {str(e)}")
                
        except ToolError:
            # Let tool-specific errors pass through
            raise
        except Exception as e:
            # Catch-all for unexpected errors
            self._log_error("Unexpected error in DataQueryTool", e)
            raise ToolExecutionError(f"An unexpected error occurred: {str(e)}")
    
    def _contains_unsafe_sql(self, query):
        # Implementation of SQL injection detection
        pass
        
    def _log_error(self, message, error):
        # Implementation of error logging
        pass

3. 参数验证

始终彻底验证参数,防止格式错误或恶意输入。

// JavaScript/TypeScript example with detailed parameter validation
class FileOperationTool {
  getName() {
    return "fileOperation";
  }
  
  getDescription() {
    return "Performs file operations like read, write, and delete";
  }
  
  getDefinition() {
    return {
      name: this.getName(),
      description: this.getDescription(),
      parameters: {
        operation: {
          type: "string",
          description: "Operation to perform",
          enum: ["read", "write", "delete"]
        },
        path: {
          type: "string",
          description: "File path (must be within allowed directories)"
        },
        content: {
          type: "string",
          description: "Content to write (only for write operation)",
          optional: true
        }
      },
      required: ["operation", "path"]
    };
  }
  
  async execute(parameters) {
    // 1. Validate parameter presence
    if (!parameters.operation) {
      throw new ToolError("Missing required parameter: operation");
    }
    
    if (!parameters.path) {
      throw new ToolError("Missing required parameter: path");
    }
    
    // 2. Validate parameter types
    if (typeof parameters.operation !== "string") {
      throw new ToolError("Parameter 'operation' must be a string");
    }
    
    if (typeof parameters.path !== "string") {
      throw new ToolError("Parameter 'path' must be a string");
    }
    
    // 3. Validate parameter values
    const validOperations = ["read", "write", "delete"];
    if (!validOperations.includes(parameters.operation)) {
      throw new ToolError(`Invalid operation. Must be one of: ${validOperations.join(", ")}`);
    }
    
    // 4. Validate content presence for write operation
    if (parameters.operation === "write" && !parameters.content) {
      throw new ToolError("Content parameter is required for write operation");
    }
    
    // 5. Path safety validation
    if (!this.isPathWithinAllowedDirectories(parameters.path)) {
      throw new ToolError("Access denied: path is outside of allowed directories");
    }
    
    // Implementation based on validated parameters
    // ...
  }
  
  isPathWithinAllowedDirectories(path) {
    // Implementation of path safety check
    // ...
  }
}

安全实施示例

1. 身份验证与授权

// Java example with authentication and authorization
public class SecureDataAccessTool implements Tool {
    private final AuthenticationService authService;
    private final AuthorizationService authzService;
    private final DataService dataService;
    
    // Dependency injection
    public SecureDataAccessTool(
            AuthenticationService authService,
            AuthorizationService authzService,
            DataService dataService) {
        this.authService = authService;
        this.authzService = authzService;
        this.dataService = dataService;
    }
    
    @Override
    public String getName() {
        return "secureDataAccess";
    }
    
    @Override
    public ToolResponse execute(ToolRequest request) {
        // 1. Extract authentication context
        String authToken = request.getContext().getAuthToken();
        
        // 2. Authenticate user
        UserIdentity user;
        try {
            user = authService.validateToken(authToken);
        } catch (AuthenticationException e) {
            return ToolResponse.error("Authentication failed: " + e.getMessage());
        }
        
        // 3. Check authorization for the specific operation
        String dataId = request.getParameters().get("dataId").getAsString();
        String operation = request.getParameters().get("operation").getAsString();
        
        boolean isAuthorized = authzService.isAuthorized(user, "data:" + dataId, operation);
        if (!isAuthorized) {
            return ToolResponse.error("Access denied: Insufficient permissions for this operation");
        }
        
        // 4. Proceed with authorized operation
        try {
            switch (operation) {
                case "read":
                    Object data = dataService.getData(dataId, user.getId());
                    return ToolResponse.success(data);
                case "update":
                    JsonNode newData = request.getParameters().get("newData");
                    dataService.updateData(dataId, newData, user.getId());
                    return ToolResponse.success("Data updated successfully");
                default:
                    return ToolResponse.error("Unsupported operation: " + operation);
            }
        } catch (Exception e) {
            return ToolResponse.error("Operation failed: " + e.getMessage());
        }
    }
}

2. 速率限制

// C# rate limiting implementation
public class RateLimitingMiddleware
{
    private readonly RequestDelegate _next;
    private readonly IMemoryCache _cache;
    private readonly ILogger<RateLimitingMiddleware> _logger;
    
    // Configuration options
    private readonly int _maxRequestsPerMinute;
    
    public RateLimitingMiddleware(
        RequestDelegate next,
        IMemoryCache cache,
        ILogger<RateLimitingMiddleware> logger,
        IConfiguration config)
    {
        _next = next;
        _cache = cache;
        _logger = logger;
        _maxRequestsPerMinute = config.GetValue<int>("RateLimit:MaxRequestsPerMinute", 60);
    }
    
    public async Task InvokeAsync(HttpContext context)
    {
        // 1. Get client identifier (API key or user ID)
        string clientId = GetClientIdentifier(context);
        
        // 2. Get rate limiting key for this minute
        string cacheKey = $"rate_limit:{clientId}:{DateTime.UtcNow:yyyyMMddHHmm}";
        
        // 3. Check current request count
        if (!_cache.TryGetValue(cacheKey, out int requestCount))
        {
            requestCount = 0;
        }
        
        // 4. Enforce rate limit
        if (requestCount >= _maxRequestsPerMinute)
        {
            _logger.LogWarning("Rate limit exceeded for client {ClientId}", clientId);
            
            context.Response.StatusCode = StatusCodes.Status429TooManyRequests;
            context.Response.Headers.Add("Retry-After", "60");
            
            await context.Response.WriteAsJsonAsync(new
            {
                error = "Rate limit exceeded",
                message = "Too many requests. Please try again later.",
                retryAfterSeconds = 60
            });
            
            return;
        }
        
        // 5. Increment request count
        _cache.Set(cacheKey, requestCount + 1, TimeSpan.FromMinutes(2));
        
        // 6. Add rate limit headers
        context.Response.Headers.Add("X-RateLimit-Limit", _maxRequestsPerMinute.ToString());
        context.Response.Headers.Add("X-RateLimit-Remaining", (_maxRequestsPerMinute - requestCount - 1).ToString());
        
        // 7. Continue with the request
        await _next(context);
    }
    
    private string GetClientIdentifier(HttpContext context)
    {
        // Implementation to extract API key or user ID
        // ...
    }
}

测试最佳实践

1. 单元测试MCP工具

始终在隔离环境中测试工具,模拟外部依赖:

// TypeScript example of a tool unit test
describe('WeatherForecastTool', () => {
  let tool: WeatherForecastTool;
  let mockWeatherService: jest.Mocked<IWeatherService>;
  
  beforeEach(() => {
    // Create a mock weather service
    mockWeatherService = {
      getForecasts: jest.fn()
    } as any;
    
    // Create the tool with the mock dependency
    tool = new WeatherForecastTool(mockWeatherService);
  });
  
  it('should return weather forecast for a location', async () => {
    // Arrange
    const mockForecast = {
      location: 'Seattle',
      forecasts: [
        { date: '2025-07-16', temperature: 72, conditions: 'Sunny' },
        { date: '2025-07-17', temperature: 68, conditions: 'Partly Cloudy' },
        { date: '2025-07-18', temperature: 65, conditions: 'Rain' }
      ]
    };
    
    mockWeatherService.getForecasts.mockResolvedValue(mockForecast);
    
    // Act
    const response = await tool.execute({
      location: 'Seattle',
      days: 3
    });
    
    // Assert
    expect(mockWeatherService.getForecasts).toHaveBeenCalledWith('Seattle', 3);
    expect(response.content[0].text).toContain('Seattle');
    expect(response.content[0].text).toContain('Sunny');
  });
  
  it('should handle errors from the weather service', async () => {
    // Arrange
    mockWeatherService.getForecasts.mockRejectedValue(new Error('Service unavailable'));
    
    // Act & Assert
    await expect(tool.execute({
      location: 'Seattle',
      days: 3
    })).rejects.toThrow('Weather service error: Service unavailable');
  });
});

2. 集成测试

测试从客户端请求到服务器响应的完整流程:

# Python integration test example
@pytest.mark.asyncio
async def test_mcp_server_integration():
    # Start a test server
    server = McpServer()
    server.register_tool(WeatherForecastTool(MockWeatherService()))
    await server.start(port=5000)
    
    try:
        # Create a client
        client = McpClient("http://localhost:5000")
        
        # Test tool discovery
        tools = await client.discover_tools()
        assert "weatherForecast" in [t.name for t in tools]
        
        # Test tool execution
        response = await client.execute_tool("weatherForecast", {
            "location": "Seattle",
            "days": 3
        })
        
        # Verify response
        assert response.status_code == 200
        assert "Seattle" in response.content[0].text
        assert len(json.loads(response.content[0].text)["forecasts"]) == 3
        
    finally:
        # Clean up
        await server.stop()

性能优化

1. 缓存策略

实施适当的缓存以减少延迟和资源使用:

// C# example with caching
public class CachedWeatherTool : ITool
{
    private readonly IWeatherService _weatherService;
    private readonly IDistributedCache _cache;
    private readonly ILogger<CachedWeatherTool> _logger;
    
    public CachedWeatherTool(
        IWeatherService weatherService,
        IDistributedCache cache,
        ILogger<CachedWeatherTool> logger)
    {
        _weatherService = weatherService;
        _cache = cache;
        _logger = logger;
    }
    
    public string Name => "weatherForecast";
    
    public async Task<ToolResponse> ExecuteAsync(IDictionary<string, object> parameters)
    {
        var location = parameters["location"].ToString();
        var days = Convert.ToInt32(parameters.GetValueOrDefault("days", 3));
        
        // Create cache key
        string cacheKey = $"weather:{location}:{days}";
        
        // Try to get from cache
        string cachedForecast = await _cache.GetStringAsync(cacheKey);
        if (!string.IsNullOrEmpty(cachedForecast))
        {
            _logger.LogInformation("Cache hit for weather forecast: {Location}", location);
            return new ToolResponse
            {
                Content = new List<ContentItem>
                {
                    new TextContent(cachedForecast)
                }
            };
        }
        
        // Cache miss - get from service
        _logger.LogInformation("Cache miss for weather forecast: {Location}", location);
        var forecast = await _weatherService.GetForecastAsync(location, days);
        string forecastJson = JsonSerializer.Serialize(forecast);
        
        // Store in cache (weather forecasts valid for 1 hour)
        await _cache.SetStringAsync(
            cacheKey,
            forecastJson,
            new DistributedCacheEntryOptions
            {
                AbsoluteExpirationRelativeToNow = TimeSpan.FromHours(1)
            });
        
        return new ToolResponse
        {
            Content = new List<ContentItem>
            {
                new TextContent(forecastJson)
            }
        };
    }
}

2. 依赖注入与可测试性

设计工具以通过构造函数注入接收其依赖项,使其可测试且可配置:

// Java example with dependency injection
public class CurrencyConversionTool implements Tool {
    private final ExchangeRateService exchangeService;
    private final CacheService cacheService;
    private final Logger logger;
    
    // Dependencies injected through constructor
    public CurrencyConversionTool(
            ExchangeRateService exchangeService,
            CacheService cacheService,
            Logger logger) {
        this.exchangeService = exchangeService;
        this.cacheService = cacheService;
        this.logger = logger;
    }
    
    // Tool implementation
    // ...
}

3. 可组合工具

设计可以组合在一起的工具,以创建更复杂的工作流:

# Python example showing composable tools
class DataFetchTool(Tool):
    def get_name(self):
        return "dataFetch"
    
    # Implementation...

class DataAnalysisTool(Tool):
    def get_name(self):
        return "dataAnalysis"
    
    # This tool can use results from the dataFetch tool
    async def execute_async(self, request):
        # Implementation...
        pass

class DataVisualizationTool(Tool):
    def get_name(self):
        return "dataVisualize"
    
    # This tool can use results from the dataAnalysis tool
    async def execute_async(self, request):
        # Implementation...
        pass

# These tools can be used independently or as part of a workflow

架构设计最佳实践

架构是模型与工具之间的契约。良好的架构设计可以提高工具的可用性。

1. 清晰的参数描述

始终为每个参数提供描述性信息:

public object GetSchema()
{
    return new {
        type = "object",
        properties = new {
            query = new { 
                type = "string", 
                description = "Search query text. Use precise keywords for better results." 
            },
            filters = new {
                type = "object",
                description = "Optional filters to narrow down search results",
                properties = new {
                    dateRange = new { 
                        type = "string", 
                        description = "Date range in format YYYY-MM-DD:YYYY-MM-DD" 
                    },
                    category = new { 
                        type = "string", 
                        description = "Category name to filter by" 
                    }
                }
            },
            limit = new { 
                type = "integer", 
                description = "Maximum number of results to return (1-50)",
                default = 10
            }
        },
        required = new[] { "query" }
    };
}

2. 验证约束

包含验证约束以防止无效输入:

Map<String, Object> getSchema() {
    Map<String, Object> schema = new HashMap<>();
    schema.put("type", "object");
    
    Map<String, Object> properties = new HashMap<>();
    
    // Email property with format validation
    Map<String, Object> email = new HashMap<>();
    email.put("type", "string");
    email.put("format", "email");
    email.put("description", "User email address");
    
    // Age property with numeric constraints
    Map<String, Object> age = new HashMap<>();
    age.put("type", "integer");
    age.put("minimum", 13);
    age.put("maximum", 120);
    age.put("description", "User age in years");
    
    // Enumerated property
    Map<String, Object> subscription = new HashMap<>();
    subscription.put("type", "string");
    subscription.put("enum", Arrays.asList("free", "basic", "premium"));
    subscription.put("default", "free");
    subscription.put("description", "Subscription tier");
    
    properties.put("email", email);
    properties.put("age", age);
    properties.put("subscription", subscription);
    
    schema.put("properties", properties);
    schema.put("required", Arrays.asList("email"));
    
    return schema;
}

3. 一致的返回结构

保持响应结构的一致性,使模型更容易解释结果:

async def execute_async(self, request):
    try:
        # Process request
        results = await self._search_database(request.parameters["query"])
        
        # Always return a consistent structure
        return ToolResponse(
            result={
                "matches": [self._format_item(item) for item in results],
                "totalCount": len(results),
                "queryTime": calculation_time_ms,
                "status": "success"
            }
        )
    except Exception as e:
        return ToolResponse(
            result={
                "matches": [],
                "totalCount": 0,
                "queryTime": 0,
                "status": "error",
                "error": str(e)
            }
        )
    
def _format_item(self, item):
    """Ensures each item has a consistent structure"""
    return {
        "id": item.id,
        "title": item.title,
        "summary": item.summary[:100] + "..." if len(item.summary) > 100 else item.summary,
        "url": item.url,
        "relevance": item.score
    }

错误处理

强大的错误处理对于MCP工具的可靠性至关重要。

1. 优雅的错误处理

在适当的级别处理错误并提供信息丰富的消息:

public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
{
    try
    {
        string fileId = request.Parameters.GetProperty("fileId").GetString();
        
        try
        {
            var fileData = await _fileService.GetFileAsync(fileId);
            return new ToolResponse { 
                Result = JsonSerializer.SerializeToElement(fileData) 
            };
        }
        catch (FileNotFoundException)
        {
            throw new ToolExecutionException($"File not found: {fileId}");
        }
        catch (UnauthorizedAccessException)
        {
            throw new ToolExecutionException("You don't have permission to access this file");
        }
        catch (Exception ex) when (ex is IOException || ex is TimeoutException)
        {
            _logger.LogError(ex, "Error accessing file {FileId}", fileId);
            throw new ToolExecutionException("Error accessing file: The service is temporarily unavailable");
        }
    }
    catch (JsonException)
    {
        throw new ToolExecutionException("Invalid file ID format");
    }
    catch (Exception ex)
    {
        _logger.LogError(ex, "Unexpected error in FileAccessTool");
        throw new ToolExecutionException("An unexpected error occurred");
    }
}

2. 结构化错误响应

尽可能返回结构化的错误信息:

@Override
public ToolResponse execute(ToolRequest request) {
    try {
        // Implementation
    } catch (Exception ex) {
        Map<String, Object> errorResult = new HashMap<>();
        
        errorResult.put("success", false);
        
        if (ex instanceof ValidationException) {
            ValidationException validationEx = (ValidationException) ex;
            
            errorResult.put("errorType", "validation");
            errorResult.put("errorMessage", validationEx.getMessage());
            errorResult.put("validationErrors", validationEx.getErrors());
            
            return new ToolResponse.Builder()
                .setResult(errorResult)
                .build();
        }
        
        // Re-throw other exceptions as ToolExecutionException
        throw new ToolExecutionException("Tool execution failed: " + ex.getMessage(), ex);
    }
}

3. 重试逻辑

为瞬时故障实施适当的重试逻辑:

async def execute_async(self, request):
    max_retries = 3
    retry_count = 0
    base_delay = 1  # seconds
    
    while retry_count < max_retries:
        try:
            # Call external API
            return await self._call_api(request.parameters)
        except TransientError as e:
            retry_count += 1
            if retry_count >= max_retries:
                raise ToolExecutionException(f"Operation failed after {max_retries} attempts: {str(e)}")
                
            # Exponential backoff
            delay = base_delay * (2 ** (retry_count - 1))
            logging.warning(f"Transient error, retrying in {delay}s: {str(e)}")
            await asyncio.sleep(delay)
        except Exception as e:
            # Non-transient error, don't retry
            raise ToolExecutionException(f"Operation failed: {str(e)}")

性能优化

1. 缓存

为耗时操作实施缓存:

public class CachedDataTool : IMcpTool
{
    private readonly IDatabase _database;
    private readonly IMemoryCache _cache;
    
    public CachedDataTool(IDatabase database, IMemoryCache cache)
    {
        _database = database;
        _cache = cache;
    }
    
    public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
    {
        var query = request.Parameters.GetProperty("query").GetString();
        
        // Create cache key based on parameters
        var cacheKey = $"data_query_{ComputeHash(query)}";
        
        // Try to get from cache first
        if (_cache.TryGetValue(cacheKey, out var cachedResult))
        {
            return new ToolResponse { Result = cachedResult };
        }
        
        // Cache miss - perform actual query
        var result = await _database.QueryAsync(query);
        
        // Store in cache with expiration
        var cacheOptions = new MemoryCacheEntryOptions()
            .SetAbsoluteExpiration(TimeSpan.FromMinutes(15));
            
        _cache.Set(cacheKey, JsonSerializer.SerializeToElement(result), cacheOptions);
        
        return new ToolResponse { Result = JsonSerializer.SerializeToElement(result) };
    }
    
    private string ComputeHash(string input)
    {
        // Implementation to generate stable hash for cache key
    }
}

2. 异步处理

对I/O绑定操作使用异步编程模式:

public class AsyncDocumentProcessingTool implements Tool {
    private final DocumentService documentService;
    private final ExecutorService executorService;
    
    @Override
    public ToolResponse execute(ToolRequest request) {
        String documentId = request.getParameters().get("documentId").asText();
        
        // For long-running operations, return a processing ID immediately
        String processId = UUID.randomUUID().toString();
        
        // Start async processing
        CompletableFuture.runAsync(() -> {
            try {
                // Perform long-running operation
                documentService.processDocument(documentId);
                
                // Update status (would typically be stored in a database)
                processStatusRepository.updateStatus(processId, "completed");
            } catch (Exception ex) {
                processStatusRepository.updateStatus(processId, "failed", ex.getMessage());
            }
        }, executorService);
        
        // Return immediate response with process ID
        Map<String, Object> result = new HashMap<>();
        result.put("processId", processId);
        result.put("status", "processing");
        result.put("estimatedCompletionTime", ZonedDateTime.now().plusMinutes(5));
        
        return new ToolResponse.Builder().setResult(result).build();
    }
    
    // Companion status check tool
    public class ProcessStatusTool implements Tool {
        @Override
        public ToolResponse execute(ToolRequest request) {
            String processId = request.getParameters().get("processId").asText();
            ProcessStatus status = processStatusRepository.getStatus(processId);
            
            return new ToolResponse.Builder().setResult(status).build();
        }
    }
}

3. 资源节流

实施资源节流以防止过载:

class ThrottledApiTool(Tool):
    def __init__(self):
        self.rate_limiter = TokenBucketRateLimiter(
            tokens_per_second=5,  # Allow 5 requests per second
            bucket_size=10        # Allow bursts up to 10 requests
        )
    
    async def execute_async(self, request):
        # Check if we can proceed or need to wait
        delay = self.rate_limiter.get_delay_time()
        
        if delay > 0:
            if delay > 2.0:  # If wait is too long
                raise ToolExecutionException(
                    f"Rate limit exceeded. Please try again in {delay:.1f} seconds."
                )
            else:
                # Wait for the appropriate delay time
                await asyncio.sleep(delay)
        
        # Consume a token and proceed with the request
        self.rate_limiter.consume()
        
        # Call API
        result = await self._call_api(request.parameters)
        return ToolResponse(result=result)

class TokenBucketRateLimiter:
    def __init__(self, tokens_per_second, bucket_size):
        self.tokens_per_second = tokens_per_second
        self.bucket_size = bucket_size
        self.tokens = bucket_size
        self.last_refill = time.time()
        self.lock = asyncio.Lock()
    
    async def get_delay_time(self):
        async with self.lock:
            self._refill()
            if self.tokens >= 1:
                return 0
            
            # Calculate time until next token available
            return (1 - self.tokens) / self.tokens_per_second
    
    async def consume(self):
        async with self.lock:
            self._refill()
            self.tokens -= 1
    
    def _refill(self):
        now = time.time()
        elapsed = now - self.last_refill
        
        # Add new tokens based on elapsed time
        new_tokens = elapsed * self.tokens_per_second
        self.tokens = min(self.bucket_size, self.tokens + new_tokens)
        self.last_refill = now

安全最佳实践

1. 输入验证

始终彻底验证输入参数:

public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
{
    // Validate parameters exist
    if (!request.Parameters.TryGetProperty("query", out var queryProp))
    {
        throw new ToolExecutionException("Missing required parameter: query");
    }
    
    // Validate correct type
    if (queryProp.ValueKind != JsonValueKind.String)
    {
        throw new ToolExecutionException("Query parameter must be a string");
    }
    
    var query = queryProp.GetString();
    
    // Validate string content
    if (string.IsNullOrWhiteSpace(query))
    {
        throw new ToolExecutionException("Query parameter cannot be empty");
    }
    
    if (query.Length > 500)
    {
        throw new ToolExecutionException("Query parameter exceeds maximum length of 500 characters");
    }
    
    // Check for SQL injection attacks if applicable
    if (ContainsSqlInjection(query))
    {
        throw new ToolExecutionException("Invalid query: contains potentially unsafe SQL");
    }
    
    // Proceed with execution
    // ...
}

2. 授权检查

实施适当的授权检查:

@Override
public ToolResponse execute(ToolRequest request) {
    // Get user context from request
    UserContext user = request.getContext().getUserContext();
    
    // Check if user has required permissions
    if (!authorizationService.hasPermission(user, "documents:read")) {
        throw new ToolExecutionException("User does not have permission to access documents");
    }
    
    // For specific resources, check access to that resource
    String documentId = request.getParameters().get("documentId").asText();
    if (!documentService.canUserAccess(user.getId(), documentId)) {
        throw new ToolExecutionException("Access denied to the requested document");
    }
    
    // Proceed with tool execution
    // ...
}

3. 敏感数据处理

谨慎处理敏感数据:

class SecureDataTool(Tool):
    def get_schema(self):
        return {
            "type": "object",
            "properties": {
                "userId": {"type": "string"},
                "includeSensitiveData": {"type": "boolean", "default": False}
            },
            "required": ["userId"]
        }
    
    async def execute_async(self, request):
        user_id = request.parameters["userId"]
        include_sensitive = request.parameters.get("includeSensitiveData", False)
        
        # Get user data
        user_data = await self.user_service.get_user_data(user_id)
        
        # Filter sensitive fields unless explicitly requested AND authorized
        if not include_sensitive or not self._is_authorized_for_sensitive_data(request):
            user_data = self._redact_sensitive_fields(user_data)
        
        return ToolResponse(result=user_data)
    
    def _is_authorized_for_sensitive_data(self, request):
        # Check authorization level in request context
        auth_level = request.context.get("authorizationLevel")
        return auth_level == "admin"
    
    def _redact_sensitive_fields(self, user_data):
        # Create a copy to avoid modifying the original
        redacted = user_data.copy()
        
        # Redact specific sensitive fields
        sensitive_fields = ["ssn", "creditCardNumber", "password"]
        for field in sensitive_fields:
            if field in redacted:
                redacted[field] = "REDACTED"
        
        # Redact nested sensitive data
        if "financialInfo" in redacted:
            redacted["financialInfo"] = {"available": True, "accessRestricted": True}
        
        return redacted

MCP工具测试最佳实践

全面的测试可以确保MCP工具正常运行,处理边界情况,并与系统的其他部分正确集成。

单元测试

1. 独立测试每个工具

为每个工具的功能创建专注的测试:

[Fact]
public async Task WeatherTool_ValidLocation_ReturnsCorrectForecast()
{
    // Arrange
    var mockWeatherService = new Mock<IWeatherService>();
    mockWeatherService
        .Setup(s => s.GetForecastAsync("Seattle", 3))
        .ReturnsAsync(new WeatherForecast(/* test data */));
    
    var tool = new WeatherForecastTool(mockWeatherService.Object);
    
    var request = new ToolRequest(
        toolName: "weatherForecast",
        parameters: JsonSerializer.SerializeToElement(new { 
            location = "Seattle", 
            days = 3 
        })
    );
    
    // Act
    var response = await tool.ExecuteAsync(request);
    
    // Assert
    Assert.NotNull(response);
    var result = JsonSerializer.Deserialize<WeatherForecast>(response.Result);
    Assert.Equal("Seattle", result.Location);
    Assert.Equal(3, result.DailyForecasts.Count);
}

[Fact]
public async Task WeatherTool_InvalidLocation_ThrowsToolExecutionException()
{
    // Arrange
    var mockWeatherService = new Mock<IWeatherService>();
    mockWeatherService
        .Setup(s => s.GetForecastAsync("InvalidLocation", It.IsAny<int>()))
        .ThrowsAsync(new LocationNotFoundException("Location not found"));
    
    var tool = new WeatherForecastTool(mockWeatherService.Object);
    
    var request = new ToolRequest(
        toolName: "weatherForecast",
        parameters: JsonSerializer.SerializeToElement(new { 
            location = "InvalidLocation", 
            days = 3 
        })
    );
    
    // Act & Assert
    var exception = await Assert.ThrowsAsync<ToolExecutionException>(
        () => tool.ExecuteAsync(request)
    );
    
    Assert.Contains("Location not found", exception.Message);
}

2. 架构验证测试

测试架构是否有效并正确执行约束:

@Test
public void testSchemaValidation() {
    // Create tool instance
    SearchTool searchTool = new SearchTool();
    
    // Get schema
    Object schema = searchTool.getSchema();
    
    // Convert schema to JSON for validation
    String schemaJson = objectMapper.writeValueAsString(schema);
    
    // Validate schema is valid JSONSchema
    JsonSchemaFactory factory = JsonSchemaFactory.byDefault();
    JsonSchema jsonSchema = factory.getJsonSchema(schemaJson);
    
    // Test valid parameters
    JsonNode validParams = objectMapper.createObjectNode()
        .put("query", "test query")
        .put("limit", 5);
        
    ProcessingReport validReport = jsonSchema.validate(validParams);
    assertTrue(validReport.isSuccess());
    
    // Test missing required parameter
    JsonNode missingRequired = objectMapper.createObjectNode()
        .put("limit", 5);
        
    ProcessingReport missingReport = jsonSchema.validate(missingRequired);
    assertFalse(missingReport.isSuccess());
    
    // Test invalid parameter type
    JsonNode invalidType = objectMapper.createObjectNode()
        .put("query", "test")
        .put("limit", "not-a-number");
        
    ProcessingReport invalidReport = jsonSchema.validate(invalidType);
    assertFalse(invalidReport.isSuccess());
}

3. 错误处理测试

为错误情况创建特定测试:

@pytest.mark.asyncio
async def test_api_tool_handles_timeout():
    # Arrange
    tool = ApiTool(timeout=0.1)  # Very short timeout
    
    # Mock a request that will time out
    with aioresponses() as mocked:
        mocked.get(
            "https://api.example.com/data",
            callback=lambda *args, **kwargs: asyncio.sleep(0.5)  # Longer than timeout
        )
        
        request = ToolRequest(
            tool_name="apiTool",
            parameters={"url": "https://api.example.com/data"}
        )
        
        # Act & Assert
        with pytest.raises(ToolExecutionException) as exc_info:
            await tool.execute_async(request)
        
        # Verify exception message
        assert "timed out" in str(exc_info.value).lower()

@pytest.mark.asyncio
async def test_api_tool_handles_rate_limiting():
    # Arrange
    tool = ApiTool()
    
    # Mock a rate-limited response
    with aioresponses() as mocked:
        mocked.get(
            "https://api.example.com/data",
            status=429,
            headers={"Retry-After": "2"},
            body=json.dumps({"error": "Rate limit exceeded"})
        )
        
        request = ToolRequest(
            tool_name="apiTool",
            parameters={"url": "https://api.example.com/data"}
        )
        
        # Act & Assert
        with pytest.raises(ToolExecutionException) as exc_info:
            await tool.execute_async(request)
        
        # Verify exception contains rate limit information
        error_msg = str(exc_info.value).lower()
        assert "rate limit" in error_msg
        assert "try again" in error_msg

集成测试

1. 工具链测试

测试工具在预期组合中的协作:

[Fact]
public async Task DataProcessingWorkflow_CompletesSuccessfully()
{
    // Arrange
    var dataFetchTool = new DataFetchTool(mockDataService.Object);
    var analysisTools = new DataAnalysisTool(mockAnalysisService.Object);
    var visualizationTool = new DataVisualizationTool(mockVisualizationService.Object);
    
    var toolRegistry = new ToolRegistry();
    toolRegistry.RegisterTool(dataFetchTool);
    toolRegistry.RegisterTool(analysisTools);
    toolRegistry.RegisterTool(visualizationTool);
    
    var workflowExecutor = new WorkflowExecutor(toolRegistry);
    
    // Act
    var result = await workflowExecutor.ExecuteWorkflowAsync(new[] {
        new ToolCall("dataFetch", new { source = "sales2023" }),
        new ToolCall("dataAnalysis", ctx => new { 
            data = ctx.GetResult("dataFetch"),
            analysis = "trend" 
        }),
        new ToolCall("dataVisualize", ctx => new {
            analysisResult = ctx.GetResult("dataAnalysis"),
            type = "line-chart"
        })
    });
    
    // Assert
    Assert.NotNull(result);
    Assert.True(result.Success);
    Assert.NotNull(result.GetResult("dataVisualize"));
    Assert.Contains("chartUrl", result.GetResult("dataVisualize").ToString());
}

2. MCP服务器测试

测试MCP服务器的完整工具注册和执行:

@SpringBootTest
@AutoConfigureMockMvc
public class McpServerIntegrationTest {
    
    @Autowired
    private MockMvc mockMvc;
    
    @Autowired
    private ObjectMapper objectMapper;
    
    @Test
    public void testToolDiscovery() throws Exception {
        // Test the discovery endpoint
        mockMvc.perform(get("/mcp/tools"))
            .andExpect(status().isOk())
            .andExpect(jsonPath("$.tools").isArray())
            .andExpect(jsonPath("$.tools[*].name").value(hasItems(
                "weatherForecast", "calculator", "documentSearch"
            )));
    }
    
    @Test
    public void testToolExecution() throws Exception {
        // Create tool request
        Map<String, Object> request = new HashMap<>();
        request.put("toolName", "calculator");
        
        Map<String, Object> parameters = new HashMap<>();
        parameters.put("operation", "add");
        parameters.put("a", 5);
        parameters.put("b", 7);
        request.put("parameters", parameters);
        
        // Send request and verify response
        mockMvc.perform(post("/mcp/execute")
            .contentType(MediaType.APPLICATION_JSON)
            .content(objectMapper.writeValueAsString(request)))
            .andExpect(status().isOk())
            .andExpect(jsonPath("$.result.value").value(12));
    }
    
    @Test
    public void testToolValidation() throws Exception {
        // Create invalid tool request
        Map<String, Object> request = new HashMap<>();
        request.put("toolName", "calculator");
        
        Map<String, Object> parameters = new HashMap<>();
        parameters.put("operation", "divide");
        parameters.put("a", 10);
        // Missing parameter "b"
        request.put("parameters", parameters);
        
        // Send request and verify error response
        mockMvc.perform(post("/mcp/execute")
            .contentType(MediaType.APPLICATION_JSON)
            .content(objectMapper.writeValueAsString(request)))
            .andExpect(status().isBadRequest())
            .andExpect(jsonPath("$.error").exists());
    }
}

3. 端到端测试

测试从模型提示到工具执行的完整工作流:

@pytest.mark.asyncio
async def test_model_interaction_with_tool():
    # Arrange - Set up MCP client and mock model
    mcp_client = McpClient(server_url="http://localhost:5000")
    
    # Mock model responses
    mock_model = MockLanguageModel([
        MockResponse(
            "What's the weather in Seattle?",
            tool_calls=[{
                "tool_name": "weatherForecast",
                "parameters": {"location": "Seattle", "days": 3}
            }]
        ),
        MockResponse(
            "Here's the weather forecast for Seattle:\n- Today: 65°F, Partly Cloudy\n- Tomorrow: 68°F, Sunny\n- Day after: 62°F, Rain",
            tool_calls=[]
        )
    ])
    
    # Mock weather tool response
    with aioresponses() as mocked:
        mocked.post(
            "http://localhost:5000/mcp/execute",
            payload={
                "result": {
                    "location": "Seattle",
                    "forecast": [
                        {"date": "2023-06-01", "temperature": 65, "conditions": "Partly Cloudy"},
                        {"date": "2023-06-02", "temperature": 68, "conditions": "Sunny"},
                        {"date": "2023-06-03", "temperature": 62, "conditions": "Rain"}
                    ]
                }
            }
        )
        
        # Act
        response = await mcp_client.send_prompt(
            "What's the weather in Seattle?",
            model=mock_model,
            allowed_tools=["weatherForecast"]
        )
        
        # Assert
        assert "Seattle" in response.generated_text
        assert "65" in response.generated_text
        assert "Sunny" in response.generated_text
        assert "Rain" in response.generated_text
        assert len(response.tool_calls) == 1
        assert response.tool_calls[0].tool_name == "weatherForecast"

性能测试

1. 负载测试

测试MCP服务器可以处理的并发请求数量:

[Fact]
public async Task McpServer_HandlesHighConcurrency()
{
    // Arrange
    var server = new McpServer(
        name: "TestServer",
        version: "1.0",
        maxConcurrentRequests: 100
    );
    
    server.RegisterTool(new FastExecutingTool());
    await server.StartAsync();
    
    var client = new McpClient("http://localhost:5000");
    
    // Act
    var tasks = new List<Task<McpResponse>>();
    for (int i = 0; i < 1000; i++)
    {
        tasks.Add(client.ExecuteToolAsync("fastTool", new { iteration = i }));
    }
    
    var results = await Task.WhenAll(tasks);
    
    // Assert
    Assert.Equal(1000, results.Length);
    Assert.All(results, r => Assert.NotNull(r));
}

2. 压力测试

在极端负载下测试系统:

@Test
public void testServerUnderStress() {
    int maxUsers = 1000;
    int rampUpTimeSeconds = 60;
    int testDurationSeconds = 300;
    
    // Set up JMeter for stress testing
    StandardJMeterEngine jmeter = new StandardJMeterEngine();
    
    // Configure JMeter test plan
    HashTree testPlanTree = new HashTree();
    
    // Create test plan, thread group, samplers, etc.
    TestPlan testPlan = new TestPlan("MCP Server Stress Test");
    testPlanTree.add(testPlan);
    
    ThreadGroup threadGroup = new ThreadGroup();
    threadGroup.setNumThreads(maxUsers);
    threadGroup.setRampUp(rampUpTimeSeconds);
    threadGroup.setScheduler(true);
    threadGroup.setDuration(testDurationSeconds);
    
    testPlanTree.add(threadGroup);
    
    // Add HTTP sampler for tool execution
    HTTPSampler toolExecutionSampler = new HTTPSampler();
    toolExecutionSampler.setDomain("localhost");
    toolExecutionSampler.setPort(5000);
    toolExecutionSampler.setPath("/mcp/execute");
    toolExecutionSampler.setMethod("POST");
    toolExecutionSampler.addArgument("toolName", "calculator");
    toolExecutionSampler.addArgument("parameters", "{\"operation\":\"add\",\"a\":5,\"b\":7}");
    
    threadGroup.add(toolExecutionSampler);
    
    // Add listeners
    SummaryReport summaryReport = new SummaryReport();
    threadGroup.add(summaryReport);
    
    // Run test
    jmeter.configure(testPlanTree);
    jmeter.run();
    
    // Validate results
    assertEquals(0, summaryReport.getErrorCount());
    assertTrue(summaryReport.getAverage() < 200); // Average response time < 200ms
    assertTrue(summaryReport.getPercentile(90.0) < 500); // 90th percentile < 500ms
}

3. 监控与分析

设置监控以进行长期性能分析:

# Configure monitoring for an MCP server
def configure_monitoring(server):
    # Set up Prometheus metrics
    prometheus_metrics = {
        "request_count": Counter("mcp_requests_total", "Total MCP requests"),
        "request_latency": Histogram(
            "mcp_request_duration_seconds", 
            "Request duration in seconds",
            buckets=[0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0]
        ),
        "tool_execution_count": Counter(
            "mcp_tool_executions_total", 
            "Tool execution count",
            labelnames=["tool_name"]
        ),
        "tool_execution_latency": Histogram(
            "mcp_tool_duration_seconds", 
            "Tool execution duration in seconds",
            labelnames=["tool_name"],
            buckets=[0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0]
        ),
        "tool_errors": Counter(
            "mcp_tool_errors_total",
            "Tool execution errors",
            labelnames=["tool_name", "error_type"]
        )
    }
    
    # Add middleware for timing and recording metrics
    server.add_middleware(PrometheusMiddleware(prometheus_metrics))
    
    # Expose metrics endpoint
    @server.router.get("/metrics")
    async def metrics():
        return generate_latest()
    
    return server

MCP工作流设计模式

良好的MCP工作流设计可以提高效率、可靠性和可维护性。以下是关键模式:

1. 工具链模式

将多个工具连接成一个序列,每个工具的输出成为下一个工具的输入:

# Python Chain of Tools implementation
class ChainWorkflow:
    def __init__(self, tools_chain):
        self.tools_chain = tools_chain  # List of tool names to execute in sequence
    
    async def execute(self, mcp_client, initial_input):
        current_result = initial_input
        all_results = {"input": initial_input}
        
        for tool_name in self.tools_chain:
            # Execute each tool in the chain, passing previous result
            response = await mcp_client.execute_tool(tool_name, current_result)
            
            # Store result and use as input for next tool
            all_results[tool_name] = response.result
            current_result = response.result
        
        return {
            "final_result": current_result,
            "all_results": all_results
        }

# Example usage
data_processing_chain = ChainWorkflow([
    "dataFetch",
    "dataCleaner",
    "dataAnalyzer",
    "dataVisualizer"
])

result = await data_processing_chain.execute(
    mcp_client,
    {"source": "sales_database", "table": "transactions"}
)

2. 分发器模式

使用一个中央工具,根据输入分发到专用工具:

public class ContentDispatcherTool : IMcpTool
{
    private readonly IMcpClient _mcpClient;
    
    public ContentDispatcherTool(IMcpClient mcpClient)
    {
        _mcpClient = mcpClient;
    }
    
    public string Name => "contentProcessor";
    public string Description => "Processes content of various types";
    
    public object GetSchema()
    {
        return new {
            type = "object",
            properties = new {
                content = new { type = "string" },
                contentType = new { 
                    type = "string",
                    enum = new[] { "text", "html", "markdown", "csv", "code" }
                },
                operation = new { 
                    type = "string",
                    enum = new[] { "summarize", "analyze", "extract", "convert" }
                }
            },
            required = new[] { "content", "contentType", "operation" }
        };
    }
    
    public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
    {
        var content = request.Parameters.GetProperty("content").GetString();
        var contentType = request.Parameters.GetProperty("contentType").GetString();
        var operation = request.Parameters.GetProperty("operation").GetString();
        
        // Determine which specialized tool to use
        string targetTool = DetermineTargetTool(contentType, operation);
        
        // Forward to the specialized tool
        var specializedResponse = await _mcpClient.ExecuteToolAsync(
            targetTool,
            new { content, options = GetOptionsForTool(targetTool, operation) }
        );
        
        return new ToolResponse { Result = specializedResponse.Result };
    }
    
    private string DetermineTargetTool(string contentType, string operation)
    {
        return (contentType, operation) switch
        {
            ("text", "summarize") => "textSummarizer",
            ("text", "analyze") => "textAnalyzer",
            ("html", _) => "htmlProcessor",
            ("markdown", _) => "markdownProcessor",
            ("csv", _) => "csvProcessor",
            ("code", _) => "codeAnalyzer",
            _ => throw new ToolExecutionException($"No tool available for {contentType}/{operation}")
        };
    }
    
    private object GetOptionsForTool(string toolName, string operation)
    {
        // Return appropriate options for each specialized tool
        return toolName switch
        {
            "textSummarizer" => new { length = "medium" },
            "htmlProcessor" => new { cleanUp = true, operation },
            // Options for other tools...
            _ => new { }
        };
    }
}

3. 并行处理模式

同时执行多个工具以提高效率:

public class ParallelDataProcessingWorkflow {
    private final McpClient mcpClient;
    
    public ParallelDataProcessingWorkflow(McpClient mcpClient) {
        this.mcpClient = mcpClient;
    }
    
    public WorkflowResult execute(String datasetId) {
        // Step 1: Fetch dataset metadata (synchronous)
        ToolResponse metadataResponse = mcpClient.executeTool("datasetMetadata", 
            Map.of("datasetId", datasetId));
        
        // Step 2: Launch multiple analyses in parallel
        CompletableFuture<ToolResponse> statisticalAnalysis = CompletableFuture.supplyAsync(() ->
            mcpClient.executeTool("statisticalAnalysis", Map.of(
                "datasetId", datasetId,
                "type", "comprehensive"
            ))
        );
        
        CompletableFuture<ToolResponse> correlationAnalysis = CompletableFuture.supplyAsync(() ->
            mcpClient.executeTool("correlationAnalysis", Map.of(
                "datasetId", datasetId,
                "method", "pearson"
            ))
        );
        
        CompletableFuture<ToolResponse> outlierDetection = CompletableFuture.supplyAsync(() ->
            mcpClient.executeTool("outlierDetection", Map.of(
                "datasetId", datasetId,
                "sensitivity", "medium"
            ))
        );
        
        // Wait for all parallel tasks to complete
        CompletableFuture<Void> allAnalyses = CompletableFuture.allOf(
            statisticalAnalysis, correlationAnalysis, outlierDetection
        );
        
        allAnalyses.join();  // Wait for completion
        
        // Step 3: Combine results
        Map<String, Object> combinedResults = new HashMap<>();
        combinedResults.put("metadata", metadataResponse.getResult());
        combinedResults.put("statistics", statisticalAnalysis.join().getResult());
        combinedResults.put("correlations", correlationAnalysis.join().getResult());
        combinedResults.put("outliers", outlierDetection.join().getResult());
        
        // Step 4: Generate summary report
        ToolResponse summaryResponse = mcpClient.executeTool("reportGenerator", 
            Map.of("analysisResults", combinedResults));
        
        // Return complete workflow result
        WorkflowResult result = new WorkflowResult();
        result.setDatasetId(datasetId);
        result.setAnalysisResults(combinedResults);
        result.setSummaryReport(summaryResponse.getResult());
        
        return result;
    }
}

4. 错误恢复模式

为工具故障实施优雅的回退机制:

class ResilientWorkflow:
    def __init__(self, mcp_client):
        self.client = mcp_client
    
    async def execute_with_fallback(self, primary_tool, fallback_tool, parameters):
        try:
            # Try primary tool first
            response = await self.client.execute_tool(primary_tool, parameters)
            return {
                "result": response.result,
                "source": "primary",
                "tool": primary_tool
            }
        except ToolExecutionException as e:
            # Log the failure
            logging.warning(f"Primary tool '{primary_tool}' failed: {str(e)}")
            
            # Fall back to secondary tool
            try:
                # Might need to transform parameters for fallback tool
                fallback_params = self._adapt_parameters(parameters, primary_tool, fallback_tool)
                
                response = await self.client.execute_tool(fallback_tool, fallback_params)
                return {
                    "result": response.result,
                    "source": "fallback",
                    "tool": fallback_tool,
                    "primaryError": str(e)
                }
            except ToolExecutionException as fallback_error:
                # Both tools failed
                logging.error(f"Both primary and fallback tools failed. Fallback error: {str(fallback_error)}")
                raise WorkflowExecutionException(
                    f"Workflow failed: primary error: {str(e)}; fallback error: {str(fallback_error)}"
                )
    
    def _adapt_parameters(self, params, from_tool, to_tool):
        """Adapt parameters between different tools if needed"""
        # This implementation would depend on the specific tools
        # For this example, we'll just return the original parameters
        return params

# Example usage
async def get_weather(workflow, location):
    return await workflow.execute_with_fallback(
        "premiumWeatherService",  # Primary (paid) weather API
        "basicWeatherService",    # Fallback (free) weather API
        {"location": location}
    )

5. 工作流组合模式

通过组合简单工作流构建复杂工作流:

public class CompositeWorkflow : IWorkflow
{
    private readonly List<IWorkflow> _workflows;
    
    public CompositeWorkflow(IEnumerable<IWorkflow> workflows)
    {
        _workflows = new List<IWorkflow>(workflows);
    }
    
    public async Task<WorkflowResult> ExecuteAsync(WorkflowContext context)
    {
        var results = new Dictionary<string, object>();
        
        foreach (var workflow in _workflows)
        {
            var workflowResult = await workflow.ExecuteAsync(context);
            
            // Store each workflow's result
            results[workflow.Name] = workflowResult;
            
            // Update context with the result for the next workflow
            context = context.WithResult(workflow.Name, workflowResult);
        }
        
        return new WorkflowResult(results);
    }
    
    public string Name => "CompositeWorkflow";
    public string Description => "Executes multiple workflows in sequence";
}

// Example usage
var documentWorkflow = new CompositeWorkflow(new IWorkflow[] {
    new DocumentFetchWorkflow(),
    new DocumentProcessingWorkflow(),
    new InsightGenerationWorkflow(),
    new ReportGenerationWorkflow()
});

var result = await documentWorkflow.ExecuteAsync(new WorkflowContext {
    Parameters = new { documentId = "12345" }
});

测试MCP服务器:最佳实践与顶级技巧

概述

测试是开发可靠、高质量MCP服务器的重要环节。本指南提供了全面的最佳实践和技巧,涵盖从单元测试到集成测试以及端到端验证的整个开发生命周期。

为什么MCP服务器测试很重要

MCP服务器是AI模型与客户端应用之间的重要中间件。全面的测试可以确保:

  • 在生产环境中的可靠性
  • 请求和响应的准确处理
  • MCP规范的正确实施
  • 对故障和边界情况的弹性
  • 在各种负载下的一致性能

MCP服务器的单元测试

单元测试(基础)

单元测试在隔离环境中验证MCP服务器的各个组件。

测试内容

  1. 资源处理器:独立测试每个资源处理器的逻辑
  2. 工具实现:验证工具在各种输入下的行为
  3. 提示模板:确保提示模板正确渲染
  4. 架构验证:测试参数验证逻辑
  5. 错误处理:验证无效输入的错误响应

单元测试最佳实践

// Example unit test for a calculator tool in C#
[Fact]
public async Task CalculatorTool_Add_ReturnsCorrectSum()
{
    // Arrange
    var calculator = new CalculatorTool();
    var parameters = new Dictionary<string, object>
    {
        ["operation"] = "add",
        ["a"] = 5,
        ["b"] = 7
    };
    
    // Act
    var response = await calculator.ExecuteAsync(parameters);
    var result = JsonSerializer.Deserialize<CalculationResult>(response.Content[0].ToString());
    
    // Assert
    Assert.Equal(12, result.Value);
}
# Example unit test for a calculator tool in Python
def test_calculator_tool_add():
    # Arrange
    calculator = CalculatorTool()
    parameters = {
        "operation": "add",
        "a": 5,
        "b": 7
    }
    
    # Act
    response = calculator.execute(parameters)
    result = json.loads(response.content[0].text)
    
    # Assert
    assert result["value"] == 12

集成测试(中间层)

集成测试验证MCP服务器组件之间的交互。

测试内容

  1. 服务器初始化:测试服务器在各种配置下的启动
  2. 路由注册:验证所有端点是否正确注册
  3. 请求处理:测试完整的请求-响应周期
  4. 错误传播:确保错误在组件之间正确处理
  5. 身份验证与授权:测试安全机制

集成测试最佳实践

// Example integration test for MCP server in C#
[Fact]
public async Task Server_ProcessToolRequest_ReturnsValidResponse()
{
    // Arrange
    var server = new McpServer();
    server.RegisterTool(new CalculatorTool());
    await server.StartAsync();
    
    var request = new McpRequest
    {
        Tool = "calculator",
        Parameters = new Dictionary<string, object>
        {
            ["operation"] = "multiply",
            ["a"] = 6,
            ["b"] = 7
        }
    };
    
    // Act
    var response = await server.ProcessRequestAsync(request);
    
    // Assert
    Assert.NotNull(response);
    Assert.Equal(McpStatusCodes.Success, response.StatusCode);
    // Additional assertions for response content
    
    // Cleanup
    await server.StopAsync();
}

端到端测试(顶层)

端到端测试验证从客户端到服务器的完整系统行为。

测试内容

  1. 客户端-服务器通信:测试完整的请求-响应周期
  2. 真实客户端SDK:使用实际客户端实现进行测试
  3. 负载下的性能:验证在多个并发请求下的行为
  4. 错误恢复:测试系统从故障中的恢复能力
  5. 长时间运行的操作:验证流式和长时间操作的处理

端到端测试最佳实践

// Example E2E test with a client in TypeScript
describe('MCP Server E2E Tests', () => {
  let client: McpClient;
  
  beforeAll(async () => {
    // Start server in test environment
    await startTestServer();
    client = new McpClient('http://localhost:5000');
  });
  
  afterAll(async () => {
    await stopTestServer();
  });
  
  test('Client can invoke calculator tool and get correct result', async () => {
    // Act
    const response = await client.invokeToolAsync('calculator', {
      operation: 'divide',
      a: 20,
      b: 4
    });
    
    // Assert
    expect(response.statusCode).toBe(200);
    expect(response.content[0].text).toContain('5');
  });
});

MCP测试中的模拟策略

模拟是隔离组件测试的关键。

模拟的组件

  1. 外部AI模型:模拟模型响应以进行可预测的测试
  2. 外部服务:模拟API依赖(数据库、第三方服务)
  3. 身份验证服务:模拟身份提供者
  4. 资源提供者:模拟昂贵的资源处理器

示例:模拟AI模型响应

// C# example with Moq
var mockModel = new Mock<ILanguageModel>();
mockModel
    .Setup(m => m.GenerateResponseAsync(
        It.IsAny<string>(),
        It.IsAny<McpRequestContext>()))
    .ReturnsAsync(new ModelResponse { 
        Text = "Mocked model response",
        FinishReason = FinishReason.Completed
    });

var server = new McpServer(modelClient: mockModel.Object);
# Python example with unittest.mock
@patch('mcp_server.models.OpenAIModel')
def test_with_mock_model(mock_model):
    # Configure mock
    mock_model.return_value.generate_response.return_value = {
        "text": "Mocked model response",
        "finish_reason": "completed"
    }
    
    # Use mock in test
    server = McpServer(model_client=mock_model)
    # Continue with test

性能测试

性能测试对于生产环境中的MCP服务器至关重要。

测量内容

  1. 延迟:请求的响应时间
  2. 吞吐量:每秒处理的请求数量
  3. 资源利用率:CPU、内存、网络使用情况
  4. 并发处理能力:在并行请求下的行为
  5. 扩展特性:随着负载增加的性能表现

性能测试工具

  • k6:开源负载测试工具
  • JMeter:全面的性能测试工具
  • Locust:基于Python的负载测试工具
  • Azure Load Testing:基于云的性能测试工具

示例:使用k6进行基本负载测试

// k6 script for load testing MCP server
import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
  vus: 10,  // 10 virtual users
  duration: '30s',
};

export default function () {
  const payload = JSON.stringify({
    tool: 'calculator',
    parameters: {
      operation: 'add',
      a: Math.floor(Math.random() * 100),
      b: Math.floor(Math.random() * 100)
    }
  });

  const params = {
    headers: {
      'Content-Type': 'application/json',
      'Authorization': 'Bearer test-token'
    },
  };

  const res = http.post('http://localhost:5000/api/tools/invoke', payload, params);
  
  check(res, {
    'status is 200': (r) => r.status === 200,
    'response time < 500ms': (r) => r.timings.duration < 500,
  });
  
  sleep(1);
}

MCP服务器的测试自动化

测试自动化可以确保质量的一致性并加快反馈循环。

CI/CD集成

  1. 在拉取请求上运行单元测试:确保代码更改不会破坏现有功能
  2. 在预生产环境中运行集成测试:在生产前环境中运行集成测试
  3. 性能基准:维护性能基准以捕捉回归问题
  4. 安全扫描:将安全测试自动化,作为流水线的一部分

示例 CI 流水线(GitHub Actions)

name: MCP Server Tests

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  test:
    runs-on: ubuntu-latest
    
    steps:
    - uses: actions/checkout@v2
    
    - name: Set up Runtime
      uses: actions/setup-dotnet@v1
      with:
        dotnet-version: '8.0.x'
    
    - name: Restore dependencies
      run: dotnet restore
    
    - name: Build
      run: dotnet build --no-restore
    
    - name: Unit Tests
      run: dotnet test --no-build --filter Category=Unit
    
    - name: Integration Tests
      run: dotnet test --no-build --filter Category=Integration
      
    - name: Performance Tests
      run: dotnet run --project tests/PerformanceTests/PerformanceTests.csproj

测试 MCP 规范的合规性

验证您的服务器是否正确实现了 MCP 规范。

关键合规领域

  1. API 端点:测试所需的端点(/resources, /tools 等)
  2. 请求/响应格式:验证是否符合模式规范
  3. 错误代码:验证各种场景下的正确状态码
  4. 内容类型:测试对不同内容类型的处理
  5. 认证流程:验证符合规范的认证机制

合规测试套件

[Fact]
public async Task Server_ResourceEndpoint_ReturnsCorrectSchema()
{
    // Arrange
    var client = new HttpClient();
    client.DefaultRequestHeaders.Add("Authorization", "Bearer test-token");
    
    // Act
    var response = await client.GetAsync("http://localhost:5000/api/resources");
    var content = await response.Content.ReadAsStringAsync();
    var resources = JsonSerializer.Deserialize<ResourceList>(content);
    
    // Assert
    Assert.Equal(HttpStatusCode.OK, response.StatusCode);
    Assert.NotNull(resources);
    Assert.All(resources.Resources, resource => 
    {
        Assert.NotNull(resource.Id);
        Assert.NotNull(resource.Type);
        // Additional schema validation
    });
}

有效 MCP 服务器测试的十大技巧

  1. 单独测试工具定义:独立验证模式定义,而不是直接测试工具逻辑
  2. 使用参数化测试:用多种输入(包括边界情况)测试工具
  3. 检查错误响应:验证所有可能错误条件的正确错误处理
  4. 测试授权逻辑:确保不同用户角色的访问控制正确
  5. 监控测试覆盖率:确保关键路径代码的高覆盖率
  6. 测试流式响应:验证流式内容的正确处理
  7. 模拟网络问题:测试在网络状况不佳时的行为
  8. 测试资源限制:验证在达到配额或速率限制时的行为
  9. 自动化回归测试:构建在每次代码更改时运行的测试套件
  10. 记录测试用例:维护清晰的测试场景文档

常见测试陷阱

  • 过度依赖“正常路径”测试:确保彻底测试错误情况
  • 忽视性能测试:在性能瓶颈影响生产之前识别它们
  • 仅在隔离环境中测试:结合单元测试、集成测试和端到端测试
  • API 覆盖不完整:确保所有端点和功能都经过测试
  • 测试环境不一致:使用容器确保一致的测试环境

结论

全面的测试策略对于开发可靠、高质量的 MCP 服务器至关重要。通过实施本指南中概述的最佳实践和技巧,您可以确保 MCP 实现达到最高的质量、可靠性和性能标准。

关键要点

  1. 工具设计:遵循单一职责原则,使用依赖注入,设计具有可组合性
  2. 模式设计:创建清晰、文档完善的模式,并设置适当的验证约束
  3. 错误处理:实现优雅的错误处理、结构化的错误响应和重试逻辑
  4. 性能:使用缓存、异步处理和资源限制
  5. 安全性:应用全面的输入验证、授权检查和敏感数据处理
  6. 测试:创建全面的单元测试、集成测试和端到端测试
  7. 工作流模式:应用链式、分发器和并行处理等成熟模式

练习

设计一个 MCP 工具和工作流,用于文档处理系统,该系统需满足以下要求:

  1. 接收多种格式的文档(PDF、DOCX、TXT)
  2. 从文档中提取文本和关键信息
  3. 按文档类型和内容进行分类
  4. 为每个文档生成摘要

实现工具模式、错误处理以及最适合此场景的工作流模式。考虑如何测试此实现。

资源

  1. 加入 Azure AI Foundry Discord 社区,了解最新动态
  2. 为开源 MCP 项目 做贡献
  3. 在您自己的组织的 AI 项目中应用 MCP 原则
  4. 探索针对您行业的专用 MCP 实现
  5. 考虑参加关于特定 MCP 主题的高级课程,例如多模态集成或企业应用集成
  6. 通过 实践实验室 学到的原则,尝试构建您自己的 MCP 工具和工作流

下一步:最佳实践 案例研究

免责声明
本文档使用AI翻译服务Co-op Translator进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。